Lie super-bialgebra structures on super-Virasoro algebra

Hengyun YANG

PDF(181 KB)
PDF(181 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 365-379. DOI: 10.1007/s11464-009-0012-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Lie super-bialgebra structures on super-Virasoro algebra

Author information +
History +

Abstract

In this paper we obtain that every super-Virasoro algebra admits only triangular coboundary Lie super-bialgebra structures and this is proved mainly based on the computation of derivations from the super- Virasoro algebra to the tensor product of its adjoint module.

Keywords

Lie super-bialgebra / Yang-Baxter equation / super-Virasoro algebra

Cite this article

Download citation ▾
Hengyun YANG. Lie super-bialgebra structures on super-Virasoro algebra. Front Math Chin, 2009, 4(2): 365‒379 https://doi.org/10.1007/s11464-009-0012-x

References

[1]
Drinfeld V G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations. Dokl Akad Nauk SSSR, 1983, 268: 285-287 (Russian)
[2]
Drinfeld V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Vol 1, 2, Berkeley, Calif, 1986. Providence: Amer Math Soc, 1987, 798-820
[3]
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107: 365-392
CrossRef Google scholar
[4]
Ng S H, Taft E J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Algebra, 2000, 151: 67-88
CrossRef Google scholar
[5]
Nichols W D. The structure of the dual Lie coalgebra of the Witt algebra. J Pure Appl Algebra, 1990, 68: 359-364
CrossRef Google scholar
[6]
Su Y C. Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023
CrossRef Google scholar
[7]
Su Y C. Classification of Harish-Chandra modules over the super-Virasoro algebras. Commun Algebra, 1995, 23: 3653-3675
CrossRef Google scholar
[8]
Taft E J. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Algebra, 1993, 87: 301-312
CrossRef Google scholar
[9]
Wu Y Z, Song G A, Su Y C. Lie bialgebras of generalized Virasoro-like type. Acta Math Sinica (English Ser), 2006, 22(6): 1915-1922
CrossRef Google scholar
[10]
Wu Y Z, Song G A, Su Y C. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35(6): 1992-2007
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(181 KB)

Accesses

Citations

Detail

Sections
Recommended

/