RESEARCH ARTICLE

Ornstein-Uhlenback type Omega model

  • Xiulian WANG 1 ,
  • Wei WANG , 1 ,
  • Chunsheng ZHANG 2
Expand
  • 1. College of Mathematical Science, Tianjin Normal University, Tianjin 300387, China
  • 2. School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received date: 22 Oct 2014

Accepted date: 05 Jan 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider the Omega model with underlying Ornstein-Uhlenbeck type surplus process for an insurance company and obtain some useful results. Explicit expressions for the expected discounted penalty function at bankruptcy with a constant bankruptcy rate and linear bankruptcy rate are derived. Based on random observations of the surplus process, we examine the differentiability for the expected discounted penalty function at bankruptcy especially at zero. Finally, we give the Laplace transforms for occupation times as an important example of Li and Zhou [Adv. Appl. Probab., 2013, 45(4): 1049–1067].

Cite this article

Xiulian WANG , Wei WANG , Chunsheng ZHANG . Ornstein-Uhlenback type Omega model[J]. Frontiers of Mathematics in China, 2016 , 11(3) : 737 -751 . DOI: 10.1007/s11464-016-0521-3

1
Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1965

2
Albrecher H, Cheung E C K, Thonhauser S. Randomized observation periods for the compound Poisson risk model: dividends. Astin Bull, 2011, 41(2): 645–672

3
Albrecher H, Cheung E C K, Thonhauser S. Randomized observation periods for the compound Poisson risk model: the discounted penalty function. Scand Actuar J, 2013, (6): 424–452

DOI

4
Albrecher H, Gerber H U, Shiu E S W. The optimal dividend barrier in the Gamma-Omega model. Eur Actuar J, 2011, 1(1): 43–35

DOI

5
Albrecher H, Lautscham V. From ruin to bankruptcy for compound Poisson surplus processes. Astin Bull, 2013, 43(2): 213–243

DOI

6
Cai J, Gerber H U, Yang H. Optimal dividends in an Ornstein-Uhlenbeck type model with credit and debit interest. N Am Actuar J, 2006, 10(2): 94–108

DOI

7
Gerber H U, Shiu E S W. On the time value of ruin. N Am Actuar J, 1998, 2(1): 48–72

DOI

8
Gerber H U, Shiu E S W, Yang H. The Omega model: from bankruptcy to occupation times in the red. Eur Actuar J, 2012, 2(2): 259–272

DOI

9
Landriault D, Renaud J F, Zhou X. Occupation times of spectrally negative Lévy processes with applications. Stochastic Process Appl, 2011, 121(11): 2629–2641

DOI

10
Li B, Zhou X. The joint Laplace transforms for diffusion occupation times. Adv Appl Probab, 2013, 45(4): 1049–1067

DOI

11
Li Y, Wang S, Zhou X, Zhu N. Diffusion occupation time before exiting. Front Math China, 2014, 9(4): 843–861

DOI

12
Li Y, Zhou X. On pre-exit joint occupation times for spectrally negative Lévy processes. Statist Probab Lett, 2014, 94: 48–55

DOI

13
Li Y, Zhou X, Zhu N. Two-sided discounted potential measures for spectrally negative Lévy processes. Statist Probab Lett, 2015, 100: 67–76

DOI

14
Loeffen R L, Renaud J F, Zhou X. Occupation times of intervals until first passage times for spectrally negative Lévy processes. Stochastic Process Appl, 2014, 124(3): 1408–1435

DOI

Outlines

/