Ornstein-Uhlenback type Omega model

Xiulian WANG , Wei WANG , Chunsheng ZHANG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 737 -751.

PDF (146KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 737 -751. DOI: 10.1007/s11464-016-0521-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Ornstein-Uhlenback type Omega model

Author information +
History +
PDF (146KB)

Abstract

We consider the Omega model with underlying Ornstein-Uhlenbeck type surplus process for an insurance company and obtain some useful results. Explicit expressions for the expected discounted penalty function at bankruptcy with a constant bankruptcy rate and linear bankruptcy rate are derived. Based on random observations of the surplus process, we examine the differentiability for the expected discounted penalty function at bankruptcy especially at zero. Finally, we give the Laplace transforms for occupation times as an important example of Li and Zhou [Adv. Appl. Probab., 2013, 45(4): 1049–1067].

Keywords

Omega model / Ornstein-Uhlenbeck type Omega model / probability of bankruptcy / Gerber-Shiu function at bankruptcy / occupation time

Cite this article

Download citation ▾
Xiulian WANG, Wei WANG, Chunsheng ZHANG. Ornstein-Uhlenback type Omega model. Front. Math. China, 2016, 11(3): 737-751 DOI:10.1007/s11464-016-0521-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1965

[2]

Albrecher H, Cheung E C K, Thonhauser S. Randomized observation periods for the compound Poisson risk model: dividends. Astin Bull, 2011, 41(2): 645–672

[3]

Albrecher H, Cheung E C K, Thonhauser S. Randomized observation periods for the compound Poisson risk model: the discounted penalty function. Scand Actuar J, 2013, (6): 424–452

[4]

Albrecher H, Gerber H U, Shiu E S W. The optimal dividend barrier in the Gamma-Omega model. Eur Actuar J, 2011, 1(1): 43–35

[5]

Albrecher H, Lautscham V. From ruin to bankruptcy for compound Poisson surplus processes. Astin Bull, 2013, 43(2): 213–243

[6]

Cai J, Gerber H U, Yang H. Optimal dividends in an Ornstein-Uhlenbeck type model with credit and debit interest. N Am Actuar J, 2006, 10(2): 94–108

[7]

Gerber H U, Shiu E S W. On the time value of ruin. N Am Actuar J, 1998, 2(1): 48–72

[8]

Gerber H U, Shiu E S W, Yang H. The Omega model: from bankruptcy to occupation times in the red. Eur Actuar J, 2012, 2(2): 259–272

[9]

Landriault D, Renaud J F, Zhou X. Occupation times of spectrally negative Lévy processes with applications. Stochastic Process Appl, 2011, 121(11): 2629–2641

[10]

Li B, Zhou X. The joint Laplace transforms for diffusion occupation times. Adv Appl Probab, 2013, 45(4): 1049–1067

[11]

Li Y, Wang S, Zhou X, Zhu N. Diffusion occupation time before exiting. Front Math China, 2014, 9(4): 843–861

[12]

Li Y, Zhou X. On pre-exit joint occupation times for spectrally negative Lévy processes. Statist Probab Lett, 2014, 94: 48–55

[13]

Li Y, Zhou X, Zhu N. Two-sided discounted potential measures for spectrally negative Lévy processes. Statist Probab Lett, 2015, 100: 67–76

[14]

Loeffen R L, Renaud J F, Zhou X. Occupation times of intervals until first passage times for spectrally negative Lévy processes. Stochastic Process Appl, 2014, 124(3): 1408–1435

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (146KB)

822

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/