RESEARCH ARTICLE

Assouad dimensions of Moran sets and Cantor-like sets

  • Wenwen LI 1,2 ,
  • Wenxia LI 3,4 ,
  • Junjie MIAO 3 ,
  • Lifeng XI , 1
Expand
  • 1. Department of Mathematics, Ningbo University, Ningbo 315211, China
  • 2. School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, China
  • 3. Department of Mathematics, East China Normal University, Shanghai 200241, China
  • 4. Shanghai Key Lab of PMMP, East China Normal University, Shanghai 200241, China

Received date: 10 Sep 2014

Accepted date: 17 Mar 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We obtain the Assouad dimensions of Moran sets under suitable condition. Using the homogeneous set introduced in [J. Math. Anal. Appl., 2015, 432:888–917], we also study the Assouad dimensions of Cantor-like sets.

Cite this article

Wenwen LI , Wenxia LI , Junjie MIAO , Lifeng XI . Assouad dimensions of Moran sets and Cantor-like sets[J]. Frontiers of Mathematics in China, 2016 , 11(3) : 705 -722 . DOI: 10.1007/s11464-016-0539-6

1
Assouad P. Espaces métriques, plongements, facteurs. Thèse de doctorat, Publ Math Orsay, No 223-7769. Orsay: Univ Paris XI, 1977

2
Assouad P. Ètude d’une dimension métrique liée à la possibilité de plongements dans Rn.C R Acad Sci Paris Sér A-B, 1979, 288(15): 731–734

3
Assouad P. Pseudodistances, facteurs et dimension métrique. In: Seminaire D’Analyse Harmonique (1979-1980). Publ Math Orsay, 80, 7. Orsay: Univ Paris XI, 1980, 1–33

4
Bedford T. Crinkly Curves, Markov Partitions and Box Dimension in Self-similar Sets. Ph D Thesis. Coventry: University of Warwick, 1984

5
Falconer K J. Fractal Geometry—Mathematical Foundations and Applications. Chichester: John Wiley & Sons, Ltd, 1990

6
Fraser J M. Assouad type dimensions and homogeneity of fractals. Trans Amer Math Soc, 2014, 366(12): 6687–6733

DOI

7
Heinonen J. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001

DOI

8
Hua S. On the Hausdorff dimension of generalized self-similar sets. Acta Math Appl Sin, 1994, 17(4): 551–558 (in Chinese)

9
Hua S, Li W X. Packing dimension of generalized Moran sets. Prog Nat Sci, 1996, 6(2): 148–152

10
Jin R. Nonstandard methods for upper Banach density problems. J Number Theory, 2001, 91: 20–38

DOI

11
Lalley S, Gatzouras D. Hausdorff and box dimensions of certain self-affine fractals. Indiana Univ Math J, 1992, 41(2): 533–568

DOI

12
Li J J. Assouad dimensions of Moran sets. C R Math Acad Sci Paris, 2013, 351(1-2): 19–22

DOI

13
Luukkainen J. Assouad dimension: Antifractal metrization, porous sets, and homogeneous measures. J Korean Math Soc, 1998, 35: 23–76

14
Lü F, Lou M L, Wen Z Y, Xi L F. Bilipschitz embedding of homogeneous fractals. J Math Anal Appl, 2015, 432: 888–917

DOI

15
Mackay J M. Assouad dimension of self-affine carpets. Conform Geom Dyn, 2011, 15: 177–187

DOI

16
Mattila P. Geometry of Sets and Measure in Euclidean Spaces. Cambridge: Cambridge University Press, 1995

DOI

17
McMullen C. The Hausdorff dimension of general Sierpinski carpets. Nagoya Math J, 1984, 96: 1–9

18
Moran P A. Additive functions of intervals and Hausdorff measure. Math Proc Cambridge Philos Soc, 1946, 42: 15–23

DOI

19
Olsen L. On the Assouad dimension of graph directed Moran fractals. Fractals, 2011, 19: 221–226

DOI

20
Wen Z Y. Mathematical Foundations of Fractal Geometry. Shanghai: Shanghai Scientific and Technological Education Publishing House, 2000 (in Chinese)

21
Wen Z Y. Moran sets and Moran classes. Chinese Sci Bull, 2001, 46: 1849–1856

DOI

Outlines

/