Assouad dimensions of Moran sets and Cantor-like sets

Wenwen LI , Wenxia LI , Junjie MIAO , Lifeng XI

Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 705 -722.

PDF (169KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 705 -722. DOI: 10.1007/s11464-016-0539-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Assouad dimensions of Moran sets and Cantor-like sets

Author information +
History +
PDF (169KB)

Abstract

We obtain the Assouad dimensions of Moran sets under suitable condition. Using the homogeneous set introduced in [J. Math. Anal. Appl., 2015, 432:888–917], we also study the Assouad dimensions of Cantor-like sets.

Keywords

Fractal / Assouad dimension / Moran set / Cantor-like set

Cite this article

Download citation ▾
Wenwen LI, Wenxia LI, Junjie MIAO, Lifeng XI. Assouad dimensions of Moran sets and Cantor-like sets. Front. Math. China, 2016, 11(3): 705-722 DOI:10.1007/s11464-016-0539-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Assouad P. Espaces métriques, plongements, facteurs. Thèse de doctorat, Publ Math Orsay, No 223-7769. Orsay: Univ Paris XI, 1977

[2]

Assouad P. Ètude d’une dimension métrique liée à la possibilité de plongements dans Rn.C R Acad Sci Paris Sér A-B, 1979, 288(15): 731–734

[3]

Assouad P. Pseudodistances, facteurs et dimension métrique. In: Seminaire D’Analyse Harmonique (1979-1980). Publ Math Orsay, 80, 7. Orsay: Univ Paris XI, 1980, 1–33

[4]

Bedford T. Crinkly Curves, Markov Partitions and Box Dimension in Self-similar Sets. Ph D Thesis. Coventry: University of Warwick, 1984

[5]

Falconer K J. Fractal Geometry—Mathematical Foundations and Applications. Chichester: John Wiley & Sons, Ltd, 1990

[6]

Fraser J M. Assouad type dimensions and homogeneity of fractals. Trans Amer Math Soc, 2014, 366(12): 6687–6733

[7]

Heinonen J. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001

[8]

Hua S. On the Hausdorff dimension of generalized self-similar sets. Acta Math Appl Sin, 1994, 17(4): 551–558 (in Chinese)

[9]

Hua S, Li W X. Packing dimension of generalized Moran sets. Prog Nat Sci, 1996, 6(2): 148–152

[10]

Jin R. Nonstandard methods for upper Banach density problems. J Number Theory, 2001, 91: 20–38

[11]

Lalley S, Gatzouras D. Hausdorff and box dimensions of certain self-affine fractals. Indiana Univ Math J, 1992, 41(2): 533–568

[12]

Li J J. Assouad dimensions of Moran sets. C R Math Acad Sci Paris, 2013, 351(1-2): 19–22

[13]

Luukkainen J. Assouad dimension: Antifractal metrization, porous sets, and homogeneous measures. J Korean Math Soc, 1998, 35: 23–76

[14]

F, Lou M L, Wen Z Y, Xi L F. Bilipschitz embedding of homogeneous fractals. J Math Anal Appl, 2015, 432: 888–917

[15]

Mackay J M. Assouad dimension of self-affine carpets. Conform Geom Dyn, 2011, 15: 177–187

[16]

Mattila P. Geometry of Sets and Measure in Euclidean Spaces. Cambridge: Cambridge University Press, 1995

[17]

McMullen C. The Hausdorff dimension of general Sierpinski carpets. Nagoya Math J, 1984, 96: 1–9

[18]

Moran P A. Additive functions of intervals and Hausdorff measure. Math Proc Cambridge Philos Soc, 1946, 42: 15–23

[19]

Olsen L. On the Assouad dimension of graph directed Moran fractals. Fractals, 2011, 19: 221–226

[20]

Wen Z Y. Mathematical Foundations of Fractal Geometry. Shanghai: Shanghai Scientific and Technological Education Publishing House, 2000 (in Chinese)

[21]

Wen Z Y. Moran sets and Moran classes. Chinese Sci Bull, 2001, 46: 1849–1856

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (169KB)

1160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/