RESEARCH ARTICLE

Banach space structure of weighted Fock-Sobolev spaces

  • Li HE 1 ,
  • Guangfu CAO , 2
Expand
  • 1. Institute of Mathematics, Guangzhou University, Guangzhou 510006, China
  • 2. Institute of Mathematics, South China Agricultural University, Guangzhou 510642, China

Received date: 22 May 2015

Accepted date: 22 Jan 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We discuss the Banach space structure of the fractional order weighted Fock-Sobolev spaces pα,s, mainly include giving some growth estimates for Fock-Sobolev functions and approximating them by a sequence of ‘nice’ functions in two different ways.

Cite this article

Li HE , Guangfu CAO . Banach space structure of weighted Fock-Sobolev spaces[J]. Frontiers of Mathematics in China, 2016 , 11(3) : 693 -703 . DOI: 10.1007/s11464-015-0516-0

1
Brockman W B. The atomic decomposition of the q-Kostka polynomials in combinatorics and geometry. Thesis Ph D. University of California, San Diego, 1997

2
Cao G F. Composition and Toeplitz operators on general domains. Tohoku Math J (2), 2005, 57(1): 11–22

3
Cao G F, He L. Fredholmness of multipliers on Hardy-Sobolev spaces. J Math Anal Appl, 2014, 418(1): 1–10

DOI

4
Cao G F, He L. Hardy-Sobolev spaces and their multipliers. Sci China Math, 2014, 57(11): 2361–2368

DOI

5
Cho H R, Choe B R, Koo H. Fock-Sobolev spaces of fractional order. Potential Anal, 2015, 43(2): 199–240

DOI

6
Cho H R, Zhu K H. Fock-Sobolev spaces and their Carleson measures. J Funct Anal, 2012, 263(8): 2483–2506

DOI

7
Cho Y K, Kim J. Atomic decomposition on Hardy-Sobolev spaces. Studia Math, 2006, 177(1): 25–42

DOI

8
De Souza G S. The atomic decomposition of Besov-Bergman-Lipschitz spaces. Proc Amer Math Soc, 1985, 94(4): 682–686

DOI

9
Drihem D. Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces. Sci China Math, 2013, 56(5): 1073–1086

DOI

10
Duong X T, Yan L X. On the atomic decomposition for Hardy spaces on Lipschitz domains of ℝn.J Funct Anal, 2004, 215(2): 476–486

DOI

11
Garnett J B, Latter R H. The atomic decomposition for Hardy spaces in several complex variables. Duke Math J, 1978, 45(4): 815–845

DOI

12
He L, Cao G F. Composition operators on Hardy-Sobolev spaces. Indian J Pure Appl Math, 2015, 46(3): 255–267

DOI

13
Li S X, Shamoyan R F. On some extensions of theorems on atomic decompositions of Bergman and Bloch spaces in the unit ball and related problems. Complex Var Elliptic Equ, 2009, 54(12): 1151–1162

DOI

14
Lou Z J, Yang S Z. An atomic decomposition for the Hardy-Sobolev space. Taiwanese J Math, 2007, 11(4): 1167–1176

15
Singh G, Virender, Kumar U. On atomic decompositions in Banach spaces. Int J Math Anal, 2010, 4(9-12): 481–488

16
Song L, Tan C Q, Yan L X. An atomic decomposition for Hardy spaces associated to Schrödinger operators. J Aust Math Soc, 2011, 91(1): 125–144

DOI

17
Tanaka K. Atomic decomposition of harmonic Bergman functions. Hiroshima Math J, 2012, 42(2): 143–160

18
Wilson J M. On the atomic decomposition for Hardy spaces. Pacific J Math, 1985, 116(1): 201–207

DOI

19
Wu X F, Jiang W G. Atomic decomposition of weighted weak Hardy spaces on spaces of homogeneous type. Commun Math Anal, 2012, 13(2): 98–107

20
Xiao J. Atomic decomposition and sequence interpolation on Bergman space A1.Approx Theory Appl, 1992, 8(1): 40–49

21
Xiao J. Carleson measure, atomic decomposition and free interpolation from Bloch space. Ann Acad Sci Fenn Ser A I Math, 1994, 19(1): 35–46

22
Zhu K H. Analysis on Fock Spaces. New York: Springer Science+Business Media, 2012

DOI

Outlines

/