Banach space structure of weighted Fock-Sobolev spaces

Li HE , Guangfu CAO

Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 693 -703.

PDF (133KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 693 -703. DOI: 10.1007/s11464-015-0516-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Banach space structure of weighted Fock-Sobolev spaces

Author information +
History +
PDF (133KB)

Abstract

We discuss the Banach space structure of the fractional order weighted Fock-Sobolev spaces pα,s, mainly include giving some growth estimates for Fock-Sobolev functions and approximating them by a sequence of ‘nice’ functions in two different ways.

Keywords

weighted Fock-Sobolev space / approximation

Cite this article

Download citation ▾
Li HE, Guangfu CAO. Banach space structure of weighted Fock-Sobolev spaces. Front. Math. China, 2016, 11(3): 693-703 DOI:10.1007/s11464-015-0516-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brockman W B. The atomic decomposition of the q-Kostka polynomials in combinatorics and geometry. Thesis Ph D. University of California, San Diego, 1997

[2]

Cao G F. Composition and Toeplitz operators on general domains. Tohoku Math J (2), 2005, 57(1): 11–22

[3]

Cao G F, He L. Fredholmness of multipliers on Hardy-Sobolev spaces. J Math Anal Appl, 2014, 418(1): 1–10

[4]

Cao G F, He L. Hardy-Sobolev spaces and their multipliers. Sci China Math, 2014, 57(11): 2361–2368

[5]

Cho H R, Choe B R, Koo H. Fock-Sobolev spaces of fractional order. Potential Anal, 2015, 43(2): 199–240

[6]

Cho H R, Zhu K H. Fock-Sobolev spaces and their Carleson measures. J Funct Anal, 2012, 263(8): 2483–2506

[7]

Cho Y K, Kim J. Atomic decomposition on Hardy-Sobolev spaces. Studia Math, 2006, 177(1): 25–42

[8]

De Souza G S. The atomic decomposition of Besov-Bergman-Lipschitz spaces. Proc Amer Math Soc, 1985, 94(4): 682–686

[9]

Drihem D. Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces. Sci China Math, 2013, 56(5): 1073–1086

[10]

Duong X T, Yan L X. On the atomic decomposition for Hardy spaces on Lipschitz domains of ℝn.J Funct Anal, 2004, 215(2): 476–486

[11]

Garnett J B, Latter R H. The atomic decomposition for Hardy spaces in several complex variables. Duke Math J, 1978, 45(4): 815–845

[12]

He L, Cao G F. Composition operators on Hardy-Sobolev spaces. Indian J Pure Appl Math, 2015, 46(3): 255–267

[13]

Li S X, Shamoyan R F. On some extensions of theorems on atomic decompositions of Bergman and Bloch spaces in the unit ball and related problems. Complex Var Elliptic Equ, 2009, 54(12): 1151–1162

[14]

Lou Z J, Yang S Z. An atomic decomposition for the Hardy-Sobolev space. Taiwanese J Math, 2007, 11(4): 1167–1176

[15]

Singh G, Virender, Kumar U. On atomic decompositions in Banach spaces. Int J Math Anal, 2010, 4(9-12): 481–488

[16]

Song L, Tan C Q, Yan L X. An atomic decomposition for Hardy spaces associated to Schrödinger operators. J Aust Math Soc, 2011, 91(1): 125–144

[17]

Tanaka K. Atomic decomposition of harmonic Bergman functions. Hiroshima Math J, 2012, 42(2): 143–160

[18]

Wilson J M. On the atomic decomposition for Hardy spaces. Pacific J Math, 1985, 116(1): 201–207

[19]

Wu X F, Jiang W G. Atomic decomposition of weighted weak Hardy spaces on spaces of homogeneous type. Commun Math Anal, 2012, 13(2): 98–107

[20]

Xiao J. Atomic decomposition and sequence interpolation on Bergman space A1.Approx Theory Appl, 1992, 8(1): 40–49

[21]

Xiao J. Carleson measure, atomic decomposition and free interpolation from Bloch space. Ann Acad Sci Fenn Ser A I Math, 1994, 19(1): 35–46

[22]

Zhu K H. Analysis on Fock Spaces. New York: Springer Science+Business Media, 2012

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (133KB)

846

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/