RESEARCH ARTICLE

lk,s-Singular values and spectral radius of partially symmetric rectangular tensors

  • Hongmei YAO ,
  • Bingsong LONG ,
  • Changjiang BU ,
  • Jiang ZHOU
Expand
  • College of Science, Harbin Engineering University, Harbin 150001, China

Received date: 02 Mar 2015

Accepted date: 05 Jun 2015

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of lk,s-singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest lk,s-singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest lk,ssingular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.

Cite this article

Hongmei YAO , Bingsong LONG , Changjiang BU , Jiang ZHOU . lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Frontiers of Mathematics in China, 2016 , 11(3) : 605 -622 . DOI: 10.1007/s11464-015-0494-7

1
Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer-Assisted Intervention, 2008. Berlin: Springer, 2008, 1–8

DOI

2
Chang K C, Pearson K J, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520

DOI

3
Chang K C, Pearson K J, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806–819

DOI

4
Chang K C, Qi L Q, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284–294

DOI

5
Chang K C, Zhang T. Multiplicity of singular values for tensors. Commun Math Sci, 2009, 7(3): 611–625

DOI

6
Dahl D, Leinass J, Myrheim J, Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711–725

DOI

7
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47: 777–780

DOI

8
Knowles J, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5: 341–361

DOI

9
Knowles J, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal, 1977, 63: 321–336

DOI

10
Lathauwer L, Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2, . . . , RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21: 1324–1342

DOI

11
Lim L. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing, 1. 2005, 129–132

12
Ling C, Nie J, Qi L Q, Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20: 1286–1310

DOI

13
Ling C, Qi L Q. lk,s-Singular values and spectral radius of rectangular tensors. Front Math China, 2013, 8(1): 63–83

DOI

14
Ng M, Qi L Q, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31(3): 1090–1099

DOI

15
Ni Q, Qi L Q, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans Automat Control, 2008, 53: 1096–1107

DOI

16
Pearson K. Essentially positive tensors. Int J Algebra, 2010, 4: 421–427

17
Qi L Q. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

DOI

18
Qi L Q. Symmetric nonegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238

DOI

19
Qi L Q, Dai H-H, Han D R. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4(2): 349–364

DOI

20
Qi L Q, Wang Y, Wu E X. D-Eigenvalues of diffusion kurtosis tensor. J Comput Appl Math, 2008, 221: 150–157

DOI

21
Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1–37

DOI

22
Schröinger E. Die gegenwätige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807–812, 823–828, 844–849

DOI

23
Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89–96

DOI

24
Wang Y, Qi L Q, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16: 589–601

DOI

25
Yang Y, Yang Q. A note on the geometric simplicity of the spectral radius of nonnegative irreducible tensor. http://arxiv.org/abs/1101.2479v1, 2010

26
Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363–378

DOI

27
Zhang L P. Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor. Front Math China, 2013, 8(1): 141–153

DOI

Outlines

/