lk,s-Singular values and spectral radius of partially symmetric rectangular tensors
Hongmei YAO, Bingsong LONG, Changjiang BU, Jiang ZHOU
lk,s-Singular values and spectral radius of partially symmetric rectangular tensors
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of lk,s-singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest lk,s-singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest lk,ssingular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.
lk,s-Singular values / spectral radius / positive definiteness / partially symmetric rectangular tensor / weakly irreducible
[1] |
Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer-Assisted Intervention, 2008. Berlin: Springer, 2008, 1–8
CrossRef
Google scholar
|
[2] |
Chang K C, Pearson K J, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520
CrossRef
Google scholar
|
[3] |
Chang K C, Pearson K J, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806–819
CrossRef
Google scholar
|
[4] |
Chang K C, Qi L Q, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284–294
CrossRef
Google scholar
|
[5] |
Chang K C, Zhang T. Multiplicity of singular values for tensors. Commun Math Sci, 2009, 7(3): 611–625
CrossRef
Google scholar
|
[6] |
Dahl D, Leinass J, Myrheim J, Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711–725
CrossRef
Google scholar
|
[7] |
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47: 777–780
CrossRef
Google scholar
|
[8] |
Knowles J, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5: 341–361
CrossRef
Google scholar
|
[9] |
Knowles J, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal, 1977, 63: 321–336
CrossRef
Google scholar
|
[10] |
Lathauwer L, Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2, . . . , RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21: 1324–1342
CrossRef
Google scholar
|
[11] |
Lim L. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing, 1. 2005, 129–132
|
[12] |
Ling C, Nie J, Qi L Q, Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20: 1286–1310
CrossRef
Google scholar
|
[13] |
Ling C, Qi L Q. lk,s-Singular values and spectral radius of rectangular tensors. Front Math China, 2013, 8(1): 63–83
CrossRef
Google scholar
|
[14] |
Ng M, Qi L Q, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31(3): 1090–1099
CrossRef
Google scholar
|
[15] |
Ni Q, Qi L Q, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans Automat Control, 2008, 53: 1096–1107
CrossRef
Google scholar
|
[16] |
Pearson K. Essentially positive tensors. Int J Algebra, 2010, 4: 421–427
|
[17] |
Qi L Q. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
CrossRef
Google scholar
|
[18] |
Qi L Q. Symmetric nonegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238
CrossRef
Google scholar
|
[19] |
Qi L Q, Dai H-H, Han D R. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4(2): 349–364
CrossRef
Google scholar
|
[20] |
Qi L Q, Wang Y, Wu E X. D-Eigenvalues of diffusion kurtosis tensor. J Comput Appl Math, 2008, 221: 150–157
CrossRef
Google scholar
|
[21] |
Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1–37
CrossRef
Google scholar
|
[22] |
Schröinger E. Die gegenwätige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807–812, 823–828, 844–849
CrossRef
Google scholar
|
[23] |
Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89–96
CrossRef
Google scholar
|
[24] |
Wang Y, Qi L Q, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16: 589–601
CrossRef
Google scholar
|
[25] |
Yang Y, Yang Q. A note on the geometric simplicity of the spectral radius of nonnegative irreducible tensor. http://arxiv.org/abs/1101.2479v1, 2010
|
[26] |
Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363–378
CrossRef
Google scholar
|
[27] |
Zhang L P. Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor. Front Math China, 2013, 8(1): 141–153
CrossRef
Google scholar
|
/
〈 | 〉 |