lk,s-Singular values and spectral radius of partially symmetric rectangular tensors

Hongmei YAO , Bingsong LONG , Changjiang BU , Jiang ZHOU

Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 605 -622.

PDF (176KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 605 -622. DOI: 10.1007/s11464-015-0494-7
RESEARCH ARTICLE
RESEARCH ARTICLE

lk,s-Singular values and spectral radius of partially symmetric rectangular tensors

Author information +
History +
PDF (176KB)

Abstract

The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of lk,s-singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest lk,s-singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest lk,ssingular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.

Keywords

lk,s-Singular values / spectral radius / positive definiteness / partially symmetric rectangular tensor / weakly irreducible

Cite this article

Download citation ▾
Hongmei YAO, Bingsong LONG, Changjiang BU, Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors. Front. Math. China, 2016, 11(3): 605-622 DOI:10.1007/s11464-015-0494-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer-Assisted Intervention, 2008. Berlin: Springer, 2008, 1–8

[2]

Chang K C, Pearson K J, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520

[3]

Chang K C, Pearson K J, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806–819

[4]

Chang K C, Qi L Q, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284–294

[5]

Chang K C, Zhang T. Multiplicity of singular values for tensors. Commun Math Sci, 2009, 7(3): 611–625

[6]

Dahl D, Leinass J, Myrheim J, Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711–725

[7]

Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47: 777–780

[8]

Knowles J, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5: 341–361

[9]

Knowles J, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal, 1977, 63: 321–336

[10]

Lathauwer L, Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2, . . . , RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21: 1324–1342

[11]

Lim L. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing, 1. 2005, 129–132

[12]

Ling C, Nie J, Qi L Q, Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20: 1286–1310

[13]

Ling C, Qi L Q. lk,s-Singular values and spectral radius of rectangular tensors. Front Math China, 2013, 8(1): 63–83

[14]

Ng M, Qi L Q, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31(3): 1090–1099

[15]

Ni Q, Qi L Q, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans Automat Control, 2008, 53: 1096–1107

[16]

Pearson K. Essentially positive tensors. Int J Algebra, 2010, 4: 421–427

[17]

Qi L Q. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

[18]

Qi L Q. Symmetric nonegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238

[19]

Qi L Q, Dai H-H, Han D R. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4(2): 349–364

[20]

Qi L Q, Wang Y, Wu E X. D-Eigenvalues of diffusion kurtosis tensor. J Comput Appl Math, 2008, 221: 150–157

[21]

Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1–37

[22]

Schröinger E. Die gegenwätige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807–812, 823–828, 844–849

[23]

Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89–96

[24]

Wang Y, Qi L Q, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16: 589–601

[25]

Yang Y, Yang Q. A note on the geometric simplicity of the spectral radius of nonnegative irreducible tensor. 2010

[26]

Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363–378

[27]

Zhang L P. Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor. Front Math China, 2013, 8(1): 141–153

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (176KB)

1103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/