RESEARCH ARTICLE

Free involutive Hom-semigroups and Hom-associative algebras

  • Shanghua ZHENG 1 ,
  • Li GUO , 1,2
Expand
  • 1. Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China
  • 2. Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, USA

Received date: 15 Nov 2014

Accepted date: 04 Jan 2015

Published date: 18 Apr 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We construct free Hom-semigroups when its unary operation is multiplicative and is an involution. Our method of construction is by bracketed words. As a consequence, we obtain free Hom-associative algebras generated by a set under the same conditions for the unary operation.

Cite this article

Shanghua ZHENG , Li GUO . Free involutive Hom-semigroups and Hom-associative algebras[J]. Frontiers of Mathematics in China, 2016 , 11(2) : 497 -508 . DOI: 10.1007/s11464-015-0448-0

1
Aizawa N, Sato H. q-deformation of the Virasoro algebra with central extension. Phys Lett B, 1991, 256: 185

DOI

2
Guo L. Operated semigroups, Motzkin paths and rooted trees. J Algebraic Combin, 2009, 29: 35–62

DOI

3
Guo L, Zheng S. Free involutive Hom-associative algebras and Poincaré-Birkhoff-Witt theorem. (In preparation)

4
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295: 314–361

DOI

5
Hellström L, Makhlouf A, Silvestrov S. Universal algebra applied to Hom-associative algebras, and more. Algebra Geom Math Phys, 2014, 85: 157–199

6
Hu N. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq, 1999, 6: 51–70

7
Liu K. Characterizations of quantum Witt algebra. Lett Math Phys, 1992, 24: 257–265

DOI

8
MacLane S. Categories for the Working Mathematician. New York: Springer-Verlag, 1971

9
Makhlouf A. Hom-dendriform algebras and Rota-Baxter Hom-algebras. Nankai Ser Pure Appl Math Theor Phys, 2012, 9: 147–171

DOI

10
Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9: 553–589

DOI

11
Makhlouf A, Silvestrov S. Hom-algebra structures. J Gen Lie Theory Appl, 2008, 2: 51–64

DOI

12
Makhlouf A, Yau D. Rota-Baxter Hom-Lie-admissible algebras. Comm Algebra, 2014, 42: 1231–1257

DOI

13
Sheng Y, Bai C. A new approach to Hom-Lie bialgebras. J Algebra, 2014, 399: 232–250

DOI

14
Yau D. Enveloping algebras of Hom-Lie algebras. J Gen Lie Theory Appl, 2008, 2: 95–108

DOI

15
Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J Phys A, 2009, 42: 165202

DOI

16
Yau D. Hom-bialgebras and comodule Hom-algebras. Int Electron J Algebra, 2010, 8: 45–64

17
Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras. J Math Phys, 2011, 52: 053502

DOI

Outlines

/