Frontiers of Mathematics in China >
Free involutive Hom-semigroups and Hom-associative algebras
Received date: 15 Nov 2014
Accepted date: 04 Jan 2015
Published date: 18 Apr 2016
Copyright
We construct free Hom-semigroups when its unary operation is multiplicative and is an involution. Our method of construction is by bracketed words. As a consequence, we obtain free Hom-associative algebras generated by a set under the same conditions for the unary operation.
Key words: Hom-semigroup; Hom-algebra; involution; free object; bracketed words
Shanghua ZHENG , Li GUO . Free involutive Hom-semigroups and Hom-associative algebras[J]. Frontiers of Mathematics in China, 2016 , 11(2) : 497 -508 . DOI: 10.1007/s11464-015-0448-0
1 |
Aizawa N, Sato H. q-deformation of the Virasoro algebra with central extension. Phys Lett B, 1991, 256: 185
|
2 |
Guo L. Operated semigroups, Motzkin paths and rooted trees. J Algebraic Combin, 2009, 29: 35–62
|
3 |
Guo L, Zheng S. Free involutive Hom-associative algebras and Poincaré-Birkhoff-Witt theorem. (In preparation)
|
4 |
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295: 314–361
|
5 |
Hellström L, Makhlouf A, Silvestrov S. Universal algebra applied to Hom-associative algebras, and more. Algebra Geom Math Phys, 2014, 85: 157–199
|
6 |
Hu N. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq, 1999, 6: 51–70
|
7 |
Liu K. Characterizations of quantum Witt algebra. Lett Math Phys, 1992, 24: 257–265
|
8 |
MacLane S. Categories for the Working Mathematician. New York: Springer-Verlag, 1971
|
9 |
Makhlouf A. Hom-dendriform algebras and Rota-Baxter Hom-algebras. Nankai Ser Pure Appl Math Theor Phys, 2012, 9: 147–171
|
10 |
Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9: 553–589
|
11 |
Makhlouf A, Silvestrov S. Hom-algebra structures. J Gen Lie Theory Appl, 2008, 2: 51–64
|
12 |
Makhlouf A, Yau D. Rota-Baxter Hom-Lie-admissible algebras. Comm Algebra, 2014, 42: 1231–1257
|
13 |
Sheng Y, Bai C. A new approach to Hom-Lie bialgebras. J Algebra, 2014, 399: 232–250
|
14 |
Yau D. Enveloping algebras of Hom-Lie algebras. J Gen Lie Theory Appl, 2008, 2: 95–108
|
15 |
Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J Phys A, 2009, 42: 165202
|
16 |
Yau D. Hom-bialgebras and comodule Hom-algebras. Int Electron J Algebra, 2010, 8: 45–64
|
17 |
Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras. J Math Phys, 2011, 52: 053502
|
/
〈 | 〉 |