Free involutive Hom-semigroups and Hom-associative algebras

Shanghua ZHENG , Li GUO

Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 497 -508.

PDF (129KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 497 -508. DOI: 10.1007/s11464-015-0448-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Free involutive Hom-semigroups and Hom-associative algebras

Author information +
History +
PDF (129KB)

Abstract

We construct free Hom-semigroups when its unary operation is multiplicative and is an involution. Our method of construction is by bracketed words. As a consequence, we obtain free Hom-associative algebras generated by a set under the same conditions for the unary operation.

Keywords

Hom-semigroup / Hom-algebra / involution / free object / bracketed words

Cite this article

Download citation ▾
Shanghua ZHENG, Li GUO. Free involutive Hom-semigroups and Hom-associative algebras. Front. Math. China, 2016, 11(2): 497-508 DOI:10.1007/s11464-015-0448-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aizawa N, Sato H. q-deformation of the Virasoro algebra with central extension. Phys Lett B, 1991, 256: 185

[2]

Guo L. Operated semigroups, Motzkin paths and rooted trees. J Algebraic Combin, 2009, 29: 35–62

[3]

Guo L, Zheng S. Free involutive Hom-associative algebras and Poincaré-Birkhoff-Witt theorem. (In preparation)

[4]

Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295: 314–361

[5]

Hellström L, Makhlouf A, Silvestrov S. Universal algebra applied to Hom-associative algebras, and more. Algebra Geom Math Phys, 2014, 85: 157–199

[6]

Hu N. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq, 1999, 6: 51–70

[7]

Liu K. Characterizations of quantum Witt algebra. Lett Math Phys, 1992, 24: 257–265

[8]

MacLane S. Categories for the Working Mathematician. New York: Springer-Verlag, 1971

[9]

Makhlouf A. Hom-dendriform algebras and Rota-Baxter Hom-algebras. Nankai Ser Pure Appl Math Theor Phys, 2012, 9: 147–171

[10]

Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9: 553–589

[11]

Makhlouf A, Silvestrov S. Hom-algebra structures. J Gen Lie Theory Appl, 2008, 2: 51–64

[12]

Makhlouf A, Yau D. Rota-Baxter Hom-Lie-admissible algebras. Comm Algebra, 2014, 42: 1231–1257

[13]

Sheng Y, Bai C. A new approach to Hom-Lie bialgebras. J Algebra, 2014, 399: 232–250

[14]

Yau D. Enveloping algebras of Hom-Lie algebras. J Gen Lie Theory Appl, 2008, 2: 95–108

[15]

Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J Phys A, 2009, 42: 165202

[16]

Yau D. Hom-bialgebras and comodule Hom-algebras. Int Electron J Algebra, 2010, 8: 45–64

[17]

Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras. J Math Phys, 2011, 52: 053502

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (129KB)

786

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/