Free involutive Hom-semigroups and Hom-associative algebras

Shanghua ZHENG, Li GUO

PDF(129 KB)
PDF(129 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 497-508. DOI: 10.1007/s11464-015-0448-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Free involutive Hom-semigroups and Hom-associative algebras

Author information +
History +

Abstract

We construct free Hom-semigroups when its unary operation is multiplicative and is an involution. Our method of construction is by bracketed words. As a consequence, we obtain free Hom-associative algebras generated by a set under the same conditions for the unary operation.

Keywords

Hom-semigroup / Hom-algebra / involution / free object / bracketed words

Cite this article

Download citation ▾
Shanghua ZHENG, Li GUO. Free involutive Hom-semigroups and Hom-associative algebras. Front. Math. China, 2016, 11(2): 497‒508 https://doi.org/10.1007/s11464-015-0448-0

References

[1]
Aizawa N, Sato H. q-deformation of the Virasoro algebra with central extension. Phys Lett B, 1991, 256: 185
CrossRef Google scholar
[2]
Guo L. Operated semigroups, Motzkin paths and rooted trees. J Algebraic Combin, 2009, 29: 35–62
CrossRef Google scholar
[3]
Guo L, Zheng S. Free involutive Hom-associative algebras and Poincaré-Birkhoff-Witt theorem. (In preparation)
[4]
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295: 314–361
CrossRef Google scholar
[5]
Hellström L, Makhlouf A, Silvestrov S. Universal algebra applied to Hom-associative algebras, and more. Algebra Geom Math Phys, 2014, 85: 157–199
[6]
Hu N. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq, 1999, 6: 51–70
[7]
Liu K. Characterizations of quantum Witt algebra. Lett Math Phys, 1992, 24: 257–265
CrossRef Google scholar
[8]
MacLane S. Categories for the Working Mathematician. New York: Springer-Verlag, 1971
[9]
Makhlouf A. Hom-dendriform algebras and Rota-Baxter Hom-algebras. Nankai Ser Pure Appl Math Theor Phys, 2012, 9: 147–171
CrossRef Google scholar
[10]
Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9: 553–589
CrossRef Google scholar
[11]
Makhlouf A, Silvestrov S. Hom-algebra structures. J Gen Lie Theory Appl, 2008, 2: 51–64
CrossRef Google scholar
[12]
Makhlouf A, Yau D. Rota-Baxter Hom-Lie-admissible algebras. Comm Algebra, 2014, 42: 1231–1257
CrossRef Google scholar
[13]
Sheng Y, Bai C. A new approach to Hom-Lie bialgebras. J Algebra, 2014, 399: 232–250
CrossRef Google scholar
[14]
Yau D. Enveloping algebras of Hom-Lie algebras. J Gen Lie Theory Appl, 2008, 2: 95–108
CrossRef Google scholar
[15]
Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J Phys A, 2009, 42: 165202
CrossRef Google scholar
[16]
Yau D. Hom-bialgebras and comodule Hom-algebras. Int Electron J Algebra, 2010, 8: 45–64
[17]
Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras. J Math Phys, 2011, 52: 053502
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(129 KB)

Accesses

Citations

Detail

Sections
Recommended

/