RESEARCH ARTICLE

Injective objects of monomorphism categories

  • Keyan SONG 1 ,
  • Yuehui ZHANG , 2
Expand
  • 1. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
  • 2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 17 Jul 2015

Accepted date: 26 Oct 2015

Published date: 18 Apr 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

For an acyclic quiver Q and a finite-dimensional algebra A, we give a unified form of the indecomposable injective objects in the monomorphism category Mon(Q,A) and prove that Mon(Q,A) has enough injective objects.

Cite this article

Keyan SONG , Yuehui ZHANG . Injective objects of monomorphism categories[J]. Frontiers of Mathematics in China, 2016 , 11(2) : 401 -409 . DOI: 10.1007/s11464-016-0524-0

1
Birkhoff G. Subgroups of abelian groups. Proc Lond Math Soc II, 1934, 38(2): 385–401

2
Chen Xiaowu. The stable monomorphism category of a Frobenius category. Math Res Lett, 2011, 18(1): 125–137

DOI

3
Chen Xiaowu. Three results on Frobenius categories. Math Z, 2012, 270(1-2): 43–58

DOI

4
Kussin D, Lenzing H, Meltzer H. Nilpotent operators and weighted projective lines. J Reine Angew Math, 2010, 685(6): 33–71

5
Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194–251

DOI

6
Luo X, Zhang P. Monic representations and Gorenstein-projective modules. Pacific J Math, 2013, 264(1): 163–194

DOI

7
Moore A. The Auslander and Ringel-Tachikawa theorem for submodule embeddings. Comm Algebra, 2010, 38: 3805–3820

DOI

8
Ringel C M, Schmidmeier M. Submodule categories of wild representation type. J Pure Appl Algebra, 2006, 205(2): 412–422

DOI

9
Ringel C M, Schmidmeier M. The Auslander-Reiten translation in submodule categories. Trans Amer Math Soc, 2008, 360(2): 691–716

DOI

10
Ringel CM, Schmidmeier M. Invariant subspaces of nilpotent operators I. J Rein Angew Math, 2008, 614: 1–52

11
Simson D. Representation types of the category of subprojective representations of a finite poset over K[t]/(tm) and a solution of a Birkhoff type problem. J Algebra, 2007, 311: 1–30

DOI

12
Simson D. Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators. J Algebra, 2015, 424: 254–293

DOI

13
Song K, Kong F, Zhang P. Monomorphism operator and perpendicular operator. Comm Algebra, 2014, 42(9): 3708–3723

DOI

14
Xiong B, Zhang P, Zhang Y. Auslander-Reiten translations in monomorphism categories. Forum Math, 2014, 26: 863–912

DOI

15
Zhang Pu. Monomorphism categories, cotilting theory, and Gorenstein-projective modules. J Algebra, 2011, 339: 180–202

Outlines

/