Frontiers of Mathematics in China >
Injective objects of monomorphism categories
Received date: 17 Jul 2015
Accepted date: 26 Oct 2015
Published date: 18 Apr 2016
Copyright
For an acyclic quiver Q and a finite-dimensional algebra A, we give a unified form of the indecomposable injective objects in the monomorphism category Mon(Q,A) and prove that Mon(Q,A) has enough injective objects.
Key words: Monomorphism categories; injective objects
Keyan SONG , Yuehui ZHANG . Injective objects of monomorphism categories[J]. Frontiers of Mathematics in China, 2016 , 11(2) : 401 -409 . DOI: 10.1007/s11464-016-0524-0
1 |
Birkhoff G. Subgroups of abelian groups. Proc Lond Math Soc II, 1934, 38(2): 385–401
|
2 |
Chen Xiaowu. The stable monomorphism category of a Frobenius category. Math Res Lett, 2011, 18(1): 125–137
|
3 |
Chen Xiaowu. Three results on Frobenius categories. Math Z, 2012, 270(1-2): 43–58
|
4 |
Kussin D, Lenzing H, Meltzer H. Nilpotent operators and weighted projective lines. J Reine Angew Math, 2010, 685(6): 33–71
|
5 |
Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194–251
|
6 |
Luo X, Zhang P. Monic representations and Gorenstein-projective modules. Pacific J Math, 2013, 264(1): 163–194
|
7 |
Moore A. The Auslander and Ringel-Tachikawa theorem for submodule embeddings. Comm Algebra, 2010, 38: 3805–3820
|
8 |
Ringel C M, Schmidmeier M. Submodule categories of wild representation type. J Pure Appl Algebra, 2006, 205(2): 412–422
|
9 |
Ringel C M, Schmidmeier M. The Auslander-Reiten translation in submodule categories. Trans Amer Math Soc, 2008, 360(2): 691–716
|
10 |
Ringel CM, Schmidmeier M. Invariant subspaces of nilpotent operators I. J Rein Angew Math, 2008, 614: 1–52
|
11 |
Simson D. Representation types of the category of subprojective representations of a finite poset over K[t]/(tm) and a solution of a Birkhoff type problem. J Algebra, 2007, 311: 1–30
|
12 |
Simson D. Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators. J Algebra, 2015, 424: 254–293
|
13 |
Song K, Kong F, Zhang P. Monomorphism operator and perpendicular operator. Comm Algebra, 2014, 42(9): 3708–3723
|
14 |
Xiong B, Zhang P, Zhang Y. Auslander-Reiten translations in monomorphism categories. Forum Math, 2014, 26: 863–912
|
15 |
Zhang Pu. Monomorphism categories, cotilting theory, and Gorenstein-projective modules. J Algebra, 2011, 339: 180–202
|
/
〈 | 〉 |