Injective objects of monomorphism categories

Keyan SONG, Yuehui ZHANG

PDF(115 KB)
PDF(115 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 401-409. DOI: 10.1007/s11464-016-0524-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Injective objects of monomorphism categories

Author information +
History +

Abstract

For an acyclic quiver Q and a finite-dimensional algebra A, we give a unified form of the indecomposable injective objects in the monomorphism category Mon(Q,A) and prove that Mon(Q,A) has enough injective objects.

Keywords

Monomorphism categories / injective objects

Cite this article

Download citation ▾
Keyan SONG, Yuehui ZHANG. Injective objects of monomorphism categories. Front. Math. China, 2016, 11(2): 401‒409 https://doi.org/10.1007/s11464-016-0524-0

References

[1]
Birkhoff G. Subgroups of abelian groups. Proc Lond Math Soc II, 1934, 38(2): 385–401
[2]
Chen Xiaowu. The stable monomorphism category of a Frobenius category. Math Res Lett, 2011, 18(1): 125–137
CrossRef Google scholar
[3]
Chen Xiaowu. Three results on Frobenius categories. Math Z, 2012, 270(1-2): 43–58
CrossRef Google scholar
[4]
Kussin D, Lenzing H, Meltzer H. Nilpotent operators and weighted projective lines. J Reine Angew Math, 2010, 685(6): 33–71
[5]
Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194–251
CrossRef Google scholar
[6]
Luo X, Zhang P. Monic representations and Gorenstein-projective modules. Pacific J Math, 2013, 264(1): 163–194
CrossRef Google scholar
[7]
Moore A. The Auslander and Ringel-Tachikawa theorem for submodule embeddings. Comm Algebra, 2010, 38: 3805–3820
CrossRef Google scholar
[8]
Ringel C M, Schmidmeier M. Submodule categories of wild representation type. J Pure Appl Algebra, 2006, 205(2): 412–422
CrossRef Google scholar
[9]
Ringel C M, Schmidmeier M. The Auslander-Reiten translation in submodule categories. Trans Amer Math Soc, 2008, 360(2): 691–716
CrossRef Google scholar
[10]
Ringel CM, Schmidmeier M. Invariant subspaces of nilpotent operators I. J Rein Angew Math, 2008, 614: 1–52
[11]
Simson D. Representation types of the category of subprojective representations of a finite poset over K[t]/(tm) and a solution of a Birkhoff type problem. J Algebra, 2007, 311: 1–30
CrossRef Google scholar
[12]
Simson D. Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators. J Algebra, 2015, 424: 254–293
CrossRef Google scholar
[13]
Song K, Kong F, Zhang P. Monomorphism operator and perpendicular operator. Comm Algebra, 2014, 42(9): 3708–3723
CrossRef Google scholar
[14]
Xiong B, Zhang P, Zhang Y. Auslander-Reiten translations in monomorphism categories. Forum Math, 2014, 26: 863–912
CrossRef Google scholar
[15]
Zhang Pu. Monomorphism categories, cotilting theory, and Gorenstein-projective modules. J Algebra, 2011, 339: 180–202

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(115 KB)

Accesses

Citations

Detail

Sections
Recommended

/