Injective objects of monomorphism categories

Keyan SONG , Yuehui ZHANG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 401 -409.

PDF (115KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 401 -409. DOI: 10.1007/s11464-016-0524-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Injective objects of monomorphism categories

Author information +
History +
PDF (115KB)

Abstract

For an acyclic quiver Q and a finite-dimensional algebra A, we give a unified form of the indecomposable injective objects in the monomorphism category Mon(Q,A) and prove that Mon(Q,A) has enough injective objects.

Keywords

Monomorphism categories / injective objects

Cite this article

Download citation ▾
Keyan SONG, Yuehui ZHANG. Injective objects of monomorphism categories. Front. Math. China, 2016, 11(2): 401-409 DOI:10.1007/s11464-016-0524-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Birkhoff G. Subgroups of abelian groups. Proc Lond Math Soc II, 1934, 38(2): 385–401

[2]

Chen Xiaowu. The stable monomorphism category of a Frobenius category. Math Res Lett, 2011, 18(1): 125–137

[3]

Chen Xiaowu. Three results on Frobenius categories. Math Z, 2012, 270(1-2): 43–58

[4]

Kussin D, Lenzing H, Meltzer H. Nilpotent operators and weighted projective lines. J Reine Angew Math, 2010, 685(6): 33–71

[5]

Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194–251

[6]

Luo X, Zhang P. Monic representations and Gorenstein-projective modules. Pacific J Math, 2013, 264(1): 163–194

[7]

Moore A. The Auslander and Ringel-Tachikawa theorem for submodule embeddings. Comm Algebra, 2010, 38: 3805–3820

[8]

Ringel C M, Schmidmeier M. Submodule categories of wild representation type. J Pure Appl Algebra, 2006, 205(2): 412–422

[9]

Ringel C M, Schmidmeier M. The Auslander-Reiten translation in submodule categories. Trans Amer Math Soc, 2008, 360(2): 691–716

[10]

Ringel CM, Schmidmeier M. Invariant subspaces of nilpotent operators I. J Rein Angew Math, 2008, 614: 1–52

[11]

Simson D. Representation types of the category of subprojective representations of a finite poset over K[t]/(tm) and a solution of a Birkhoff type problem. J Algebra, 2007, 311: 1–30

[12]

Simson D. Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators. J Algebra, 2015, 424: 254–293

[13]

Song K, Kong F, Zhang P. Monomorphism operator and perpendicular operator. Comm Algebra, 2014, 42(9): 3708–3723

[14]

Xiong B, Zhang P, Zhang Y. Auslander-Reiten translations in monomorphism categories. Forum Math, 2014, 26: 863–912

[15]

Zhang Pu. Monomorphism categories, cotilting theory, and Gorenstein-projective modules. J Algebra, 2011, 339: 180–202

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (115KB)

1098

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/