Frontiers of Mathematics in China >
Irreducible A(1)1 -modules from modules over two-dimensional non-abelian Lie algebra
Received date: 13 Apr 2015
Accepted date: 05 Oct 2015
Published date: 18 Apr 2016
Copyright
For any module V over the two-dimensional non-abelian Lie algebra b and scalar α∈ℂ, we define a class of weight modules Fα(V) with zero central charge over the affine Lie algebra A(1)1. These weight modules have infinitedimensional weight spaces if and only if V is infinite dimensional. In this paper, we will determine necessary and sufficient conditions for these modules Fα(V) to be irreducible. In this way, we obtain a lot of irreducible weight A(1)1-modules with infinite-dimensional weight spaces.
Key words: Affine Lie algebras; irreducible modules; weight modules
Genqiang LIU , Yueqiang ZHAO . Irreducible A(1)1 -modules from modules over two-dimensional non-abelian Lie algebra[J]. Frontiers of Mathematics in China, 2016 , 11(2) : 353 -363 . DOI: 10.1007/s11464-016-0503-5
1 |
Adamovic D, Lu R, Zhao K. Whittaker modules for the affine Lie algebra A(1)1. Adv Math, 2016, 289: 438–479
|
2 |
Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl(2). J Math Phys, 1974, 15: 350–359
|
3 |
Bekkert V, Benkart G, Futorny V, Kashuba I. New irreducible modules for Heisenberg and affine Lie algebras. J Algebra, 2013, 373: 284–298
|
4 |
Block R. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 139(1): 69–110
|
5 |
Chari V. Integrable representations of affine Lie algebras. Invent Math, 1986, 85: 317–335
|
6 |
Chari V, Pressley A. New unitary representations of loop groups. Math Ann, 1986, 275: 87–104
|
7 |
Chari V, Pressley A. Integrable representations of twisted affine Lie algebras. J Algebra, 1988, 113: 438–64
|
8 |
Dimitrov I, Grantcharov D. Classification of simple weight modules over affine Lie algebras. arXiv: 0910.0688
|
9 |
Futorny V. Irreducible graded A(1)1 -modules. Funct Anal Appl, 1993, 26: 289–291
|
10 |
Futorny V. Irreducible non-dense A(1)1 -modules. Pacific J Math, 1996, 172: 83–99
|
11 |
Futorny V. Verma type modules of level zero for affine Lie algebras. Trans Amer Math Soc, 1997, 349: 2663–2685
|
12 |
Futorny V. Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras. J Algebra, 2001, 238: 426–441
|
13 |
Futorny V, Grantcharov D, Martins R. Localization of free field realizations of affine Lie algebras. Lett Math Phys, 2015, 105: 483–502
|
14 |
Guo X, Zhao K. Irreducible representations of non-twisted affine Kac-Moody algebras. arXiv: 1305.4059
|
15 |
Jacobson N. The Theory of Rings. Providence: Amer Math Soc, 1943
|
16 |
Jakobsen H P, Kac V. A new class of unitarizable highest weight representations of infinite dimensional Lie algebras. II, J Funct Anal, 1989, 82(1): 69–90
|
/
〈 | 〉 |