Irreducible A(1)1 -modules from modules over two-dimensional non-abelian Lie algebra

Genqiang LIU , Yueqiang ZHAO

Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 353 -363.

PDF (129KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 353 -363. DOI: 10.1007/s11464-016-0503-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Irreducible A(1)1 -modules from modules over two-dimensional non-abelian Lie algebra

Author information +
History +
PDF (129KB)

Abstract

For any module V over the two-dimensional non-abelian Lie algebra b and scalar α∈ℂ, we define a class of weight modules Fα(V) with zero central charge over the affine Lie algebra A(1)1. These weight modules have infinitedimensional weight spaces if and only if V is infinite dimensional. In this paper, we will determine necessary and sufficient conditions for these modules Fα(V) to be irreducible. In this way, we obtain a lot of irreducible weight A(1)1-modules with infinite-dimensional weight spaces.

Keywords

Affine Lie algebras / irreducible modules / weight modules

Cite this article

Download citation ▾
Genqiang LIU, Yueqiang ZHAO. Irreducible A(1)1 -modules from modules over two-dimensional non-abelian Lie algebra. Front. Math. China, 2016, 11(2): 353-363 DOI:10.1007/s11464-016-0503-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamovic D, Lu R, Zhao K. Whittaker modules for the affine Lie algebra A(1)1. Adv Math, 2016, 289: 438–479

[2]

Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl(2). J Math Phys, 1974, 15: 350–359

[3]

Bekkert V, Benkart G, Futorny V, Kashuba I. New irreducible modules for Heisenberg and affine Lie algebras. J Algebra, 2013, 373: 284–298

[4]

Block R. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 139(1): 69–110

[5]

Chari V. Integrable representations of affine Lie algebras. Invent Math, 1986, 85: 317–335

[6]

Chari V, Pressley A. New unitary representations of loop groups. Math Ann, 1986, 275: 87–104

[7]

Chari V, Pressley A. Integrable representations of twisted affine Lie algebras. J Algebra, 1988, 113: 438–64

[8]

Dimitrov I, Grantcharov D. Classification of simple weight modules over affine Lie algebras. arXiv: 0910.0688

[9]

Futorny V. Irreducible graded A(1)1 -modules. Funct Anal Appl, 1993, 26: 289–291

[10]

Futorny V. Irreducible non-dense A(1)1 -modules. Pacific J Math, 1996, 172: 83–99

[11]

Futorny V. Verma type modules of level zero for affine Lie algebras. Trans Amer Math Soc, 1997, 349: 2663–2685

[12]

Futorny V. Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras. J Algebra, 2001, 238: 426–441

[13]

Futorny V, Grantcharov D, Martins R. Localization of free field realizations of affine Lie algebras. Lett Math Phys, 2015, 105: 483–502

[14]

Guo X, Zhao K. Irreducible representations of non-twisted affine Kac-Moody algebras. arXiv: 1305.4059

[15]

Jacobson N. The Theory of Rings. Providence: Amer Math Soc, 1943

[16]

Jakobsen H P, Kac V. A new class of unitarizable highest weight representations of infinite dimensional Lie algebras. II, J Funct Anal, 1989, 82(1): 69–90

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (129KB)

886

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/