RESEARCH ARTICLE

Minimum distances of three families of low-density parity-check codes based on finite geometries

  • Yanan FENG 1 ,
  • Shuo DENG 2 ,
  • Lu WANG 3 ,
  • Changli MA , 1
Expand
  • 1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
  • 2. School of Mathematics and Science, Shijiazhuang University of Economics, Shijiazhuang 050031, China
  • 3. Department of Mathematics and Computer Science, Hengshui University, Hengshui 053000, China

Received date: 10 Dec 2014

Accepted date: 21 Feb 2016

Published date: 18 Apr 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Three families of low-density parity-check (LDPC) codes are constructed based on the totally isotropic subspaces of symplectic, unitary, and orthogonal spaces over finite fields, respectively. The minimum distances of the three families of LDPC codes in some special cases are settled.

Cite this article

Yanan FENG , Shuo DENG , Lu WANG , Changli MA . Minimum distances of three families of low-density parity-check codes based on finite geometries[J]. Frontiers of Mathematics in China, 2016 , 11(2) : 279 -289 . DOI: 10.1007/s11464-016-0530-2

1
Aly S A. A class of quantum LDPC codes constructed from finite geometries. Global Telecomm Conf, 2008, 1–5

DOI

2
Gallager R G. Low density parity check codes. IRE Trans Inform Theory, 1962, 8: 21–28

DOI

3
Keha A B, Duman T M. Minimum distance computation of LDPC codes using a branch and cut algorithm. IEEE Trans Commun, 2010, 58: 1072–1079

DOI

4
Kim J L, Mellinger K E, Storme L. Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles. Des Codes Cryptogr, 2007, 42: 73–92

DOI

5
Kim J L, Peled U N, Perepelitsa I, Pless V, Friedland S. Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans Inform Theory, 2004, 50: 2378–2388

DOI

6
Kou Y, Lin S, Fossorier M.P. Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans Inform Theory, 2001, 47: 2711–2736

DOI

7
Liu L, Huang J, Zhou W, Zhou S. Computing the minimum distance of nonbinary LDPC codes. IEEE Trans Commun, 2012, 60: 1753–1758

DOI

8
Liva G, Song S, Lan L, Zhang Y, Ryan W, Lin S, Ryan W E. Design of LDPC codes: a survey and new results. J Commun Softw Syst, 2006, 2: 191–211

9
Sin P, Xiang Q. On the dimensions of certain LDPC codes based on q-regular bipartite graphs. IEEE Trans Inform Theory, 2006, 52: 3735–3737

DOI

10
Wan Z. Geometry of Classical Groups over Finite Fields. Beijing: Science Press, 2002

11
Yang K, Helleseth T. On the minimum distance of array codes as LDPC codes. IEEE Trans Inform Theory, 2003, 49: 3268–3271

DOI

Outlines

/