Minimum distances of three families of low-density parity-check codes based on finite geometries

Yanan FENG, Shuo DENG, Lu WANG, Changli MA

PDF(130 KB)
PDF(130 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 279-289. DOI: 10.1007/s11464-016-0530-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Minimum distances of three families of low-density parity-check codes based on finite geometries

Author information +
History +

Abstract

Three families of low-density parity-check (LDPC) codes are constructed based on the totally isotropic subspaces of symplectic, unitary, and orthogonal spaces over finite fields, respectively. The minimum distances of the three families of LDPC codes in some special cases are settled.

Keywords

low-density parity-check (LDPC) code / minimum distance / symplectic / unitary / orthogonal

Cite this article

Download citation ▾
Yanan FENG, Shuo DENG, Lu WANG, Changli MA. Minimum distances of three families of low-density parity-check codes based on finite geometries. Front. Math. China, 2016, 11(2): 279‒289 https://doi.org/10.1007/s11464-016-0530-2

References

[1]
Aly S A. A class of quantum LDPC codes constructed from finite geometries. Global Telecomm Conf, 2008, 1–5
CrossRef Google scholar
[2]
Gallager R G. Low density parity check codes. IRE Trans Inform Theory, 1962, 8: 21–28
CrossRef Google scholar
[3]
Keha A B, Duman T M. Minimum distance computation of LDPC codes using a branch and cut algorithm. IEEE Trans Commun, 2010, 58: 1072–1079
CrossRef Google scholar
[4]
Kim J L, Mellinger K E, Storme L. Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles. Des Codes Cryptogr, 2007, 42: 73–92
CrossRef Google scholar
[5]
Kim J L, Peled U N, Perepelitsa I, Pless V, Friedland S. Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans Inform Theory, 2004, 50: 2378–2388
CrossRef Google scholar
[6]
Kou Y, Lin S, Fossorier M.P. Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans Inform Theory, 2001, 47: 2711–2736
CrossRef Google scholar
[7]
Liu L, Huang J, Zhou W, Zhou S. Computing the minimum distance of nonbinary LDPC codes. IEEE Trans Commun, 2012, 60: 1753–1758
CrossRef Google scholar
[8]
Liva G, Song S, Lan L, Zhang Y, Ryan W, Lin S, Ryan W E. Design of LDPC codes: a survey and new results. J Commun Softw Syst, 2006, 2: 191–211
[9]
Sin P, Xiang Q. On the dimensions of certain LDPC codes based on q-regular bipartite graphs. IEEE Trans Inform Theory, 2006, 52: 3735–3737
CrossRef Google scholar
[10]
Wan Z. Geometry of Classical Groups over Finite Fields. Beijing: Science Press, 2002
[11]
Yang K, Helleseth T. On the minimum distance of array codes as LDPC codes. IEEE Trans Inform Theory, 2003, 49: 3268–3271
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(130 KB)

Accesses

Citations

Detail

Sections
Recommended

/