Minimum distances of three families of low-density parity-check codes based on finite geometries

Yanan FENG , Shuo DENG , Lu WANG , Changli MA

Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 279 -289.

PDF (130KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 279 -289. DOI: 10.1007/s11464-016-0530-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Minimum distances of three families of low-density parity-check codes based on finite geometries

Author information +
History +
PDF (130KB)

Abstract

Three families of low-density parity-check (LDPC) codes are constructed based on the totally isotropic subspaces of symplectic, unitary, and orthogonal spaces over finite fields, respectively. The minimum distances of the three families of LDPC codes in some special cases are settled.

Keywords

low-density parity-check (LDPC) code / minimum distance / symplectic / unitary / orthogonal

Cite this article

Download citation ▾
Yanan FENG, Shuo DENG, Lu WANG, Changli MA. Minimum distances of three families of low-density parity-check codes based on finite geometries. Front. Math. China, 2016, 11(2): 279-289 DOI:10.1007/s11464-016-0530-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aly S A. A class of quantum LDPC codes constructed from finite geometries. Global Telecomm Conf, 2008, 1–5

[2]

Gallager R G. Low density parity check codes. IRE Trans Inform Theory, 1962, 8: 21–28

[3]

Keha A B, Duman T M. Minimum distance computation of LDPC codes using a branch and cut algorithm. IEEE Trans Commun, 2010, 58: 1072–1079

[4]

Kim J L, Mellinger K E, Storme L. Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles. Des Codes Cryptogr, 2007, 42: 73–92

[5]

Kim J L, Peled U N, Perepelitsa I, Pless V, Friedland S. Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans Inform Theory, 2004, 50: 2378–2388

[6]

Kou Y, Lin S, Fossorier M.P. Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans Inform Theory, 2001, 47: 2711–2736

[7]

Liu L, Huang J, Zhou W, Zhou S. Computing the minimum distance of nonbinary LDPC codes. IEEE Trans Commun, 2012, 60: 1753–1758

[8]

Liva G, Song S, Lan L, Zhang Y, Ryan W, Lin S, Ryan W E. Design of LDPC codes: a survey and new results. J Commun Softw Syst, 2006, 2: 191–211

[9]

Sin P, Xiang Q. On the dimensions of certain LDPC codes based on q-regular bipartite graphs. IEEE Trans Inform Theory, 2006, 52: 3735–3737

[10]

Wan Z. Geometry of Classical Groups over Finite Fields. Beijing: Science Press, 2002

[11]

Yang K, Helleseth T. On the minimum distance of array codes as LDPC codes. IEEE Trans Inform Theory, 2003, 49: 3268–3271

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (130KB)

791

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/