RESEARCH ARTICLE

Generalized Heisenberg-Virasoro algebras

  • Dong LIU , 1 ,
  • Linsheng ZHU 2
Expand
  • 1. Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China
  • 2. Department of Mathematics, Changshu Institute of Technology, Changshu 215500, China

Received date: 09 Oct 2008

Accepted date: 25 Feb 2009

Published date: 05 Jun 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we mainly study the generalized Heisenberg-Virasoro algebra. Some structural properties of the Lie algebra are obtained.

Cite this article

Dong LIU , Linsheng ZHU . Generalized Heisenberg-Virasoro algebras[J]. Frontiers of Mathematics in China, 2009 , 4(2) : 297 -310 . DOI: 10.1007/s11464-009-0019-3

1
Arbarello E, DeConcini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1-36

DOI

2
Benkart G M, Moody R V. Derivations, central extensions and affine Lie algebras. Algebras Groups Geom, 1986, 3(4): 456-492

3
Billig Y. Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad Math Bull, 2003, 46(4): 529-537

4
Doković D Ž, Zhao Kaiming. Generalized Cartan type W Lie algebras in characteristic zero. J Algebra, 1997, 195: 170-210

DOI

5
Doković D Ž, Zhao Kaiming. Derivations, isomorphisms, and second cohomology of generalized Witt algebras. Trans Amer Math Soc, 1998, 350(2): 643-664

DOI

6
Fabbri M A, Moody R V. Irreducible representations of Virasoro-toroidal Lie algebras. Comm Math Phys, 1994, 159(1): 1-13

DOI

7
Fabbri M A, Okoh F. Representations of Virasoro-Heisenberg algebras and Virasorotoroidal algebras. Canad J Math, 1999, 51(3): 523-545

8
Farnsteiner R. Derivations and extensions of finitely generated graded Lie algebras. J Algebra, 1988, 118(1): 34-45

DOI

9
Jiang Qifen, Jiang Cuipo. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloquium, 2007, 14(1): 117-134

10
Kawamoto N. Generalizations of Witt algebras over a field of characteristic zero. Hiroshinma Math J, 1986, 16: 417-426

11
Liu Dong, Jiang Cuipo. Harish-Chandra modules over the twisted Heisenberg- Virasoro algebra. J Math Phys, 2008, 49(1): 1-13

12
Lu Rencai, Zhao Kaiming. Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra. <patent>arXiv:math/0510194v1</patent>

13
Pianzola A. Automorphisms of toroidal Lie algebras and their central quotients. J Algebra Appl, 2002, 1(1): 113-121

DOI

14
Shen Ran, Jiang Qifen, Su Yucai. Verma modules over the generalized Heisenberg- Virasoro algebra. Comm Alg, 2008, 38(4): 1464-1473

15
Su Yucai, Zhao Kaiming. Simple algebras of Weyl type. Science in China, Ser A, 2001, 44: 419-426

DOI

16
Su Yucai, Zhao Kaiming. Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series. J Alg, 2002, 252: 1-19

DOI

17
Su Yucai, Zhao Kaiming. Structure of Lie algebras of Weyl type. Comm Alg, 2004, 32: 1052-1059

18
Xue Min, Lin Weiqiang, Tan Shaobin. Central extension, derivations and automorphism group for Lie algebras arising from the 2-dimensional torus. Journal of Lie Theory, 2005, 16: 139-153

Options
Outlines

/