Generalized Heisenberg-Virasoro algebras

Dong LIU, Linsheng ZHU

PDF(179 KB)
PDF(179 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 297-310. DOI: 10.1007/s11464-009-0019-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalized Heisenberg-Virasoro algebras

Author information +
History +

Abstract

In this paper, we mainly study the generalized Heisenberg-Virasoro algebra. Some structural properties of the Lie algebra are obtained.

Keywords

Generalized Heisenberg-Virasoro algebra / central extension / automorphism

Cite this article

Download citation ▾
Dong LIU, Linsheng ZHU. Generalized Heisenberg-Virasoro algebras. Front Math Chin, 2009, 4(2): 297‒310 https://doi.org/10.1007/s11464-009-0019-3

References

[1]
Arbarello E, DeConcini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1-36
CrossRef Google scholar
[2]
Benkart G M, Moody R V. Derivations, central extensions and affine Lie algebras. Algebras Groups Geom, 1986, 3(4): 456-492
[3]
Billig Y. Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad Math Bull, 2003, 46(4): 529-537
[4]
Doković D Ž, Zhao Kaiming. Generalized Cartan type W Lie algebras in characteristic zero. J Algebra, 1997, 195: 170-210
CrossRef Google scholar
[5]
Doković D Ž, Zhao Kaiming. Derivations, isomorphisms, and second cohomology of generalized Witt algebras. Trans Amer Math Soc, 1998, 350(2): 643-664
CrossRef Google scholar
[6]
Fabbri M A, Moody R V. Irreducible representations of Virasoro-toroidal Lie algebras. Comm Math Phys, 1994, 159(1): 1-13
CrossRef Google scholar
[7]
Fabbri M A, Okoh F. Representations of Virasoro-Heisenberg algebras and Virasorotoroidal algebras. Canad J Math, 1999, 51(3): 523-545
[8]
Farnsteiner R. Derivations and extensions of finitely generated graded Lie algebras. J Algebra, 1988, 118(1): 34-45
CrossRef Google scholar
[9]
Jiang Qifen, Jiang Cuipo. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloquium, 2007, 14(1): 117-134
[10]
Kawamoto N. Generalizations of Witt algebras over a field of characteristic zero. Hiroshinma Math J, 1986, 16: 417-426
[11]
Liu Dong, Jiang Cuipo. Harish-Chandra modules over the twisted Heisenberg- Virasoro algebra. J Math Phys, 2008, 49(1): 1-13
[12]
Lu Rencai, Zhao Kaiming. Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra. <patent>arXiv:math/0510194v1</patent>
[13]
Pianzola A. Automorphisms of toroidal Lie algebras and their central quotients. J Algebra Appl, 2002, 1(1): 113-121
CrossRef Google scholar
[14]
Shen Ran, Jiang Qifen, Su Yucai. Verma modules over the generalized Heisenberg- Virasoro algebra. Comm Alg, 2008, 38(4): 1464-1473
[15]
Su Yucai, Zhao Kaiming. Simple algebras of Weyl type. Science in China, Ser A, 2001, 44: 419-426
CrossRef Google scholar
[16]
Su Yucai, Zhao Kaiming. Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series. J Alg, 2002, 252: 1-19
CrossRef Google scholar
[17]
Su Yucai, Zhao Kaiming. Structure of Lie algebras of Weyl type. Comm Alg, 2004, 32: 1052-1059
[18]
Xue Min, Lin Weiqiang, Tan Shaobin. Central extension, derivations and automorphism group for Lie algebras arising from the 2-dimensional torus. Journal of Lie Theory, 2005, 16: 139-153

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(179 KB)

Accesses

Citations

Detail

Sections
Recommended

/