SURVEY ARTICLE

Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays

  • Hermann BRUNNER , 1,2
Expand
  • 1. Department of Mathematics and Statistics, Memorial University of Newfoundland,St. John’s, NL A1C 5S7, Canada
  • 2. Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

Received date: 20 Apr 2008

Accepted date: 03 Aug 2008

Published date: 05 Mar 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The aims of this paper are (i) to present a survey of recent advances in the analysis of superconvergence of collocation solutions for linear Volterra-type functional integral and integro-differential equations with delay functions θ(t) vanishing at the initial point of the interval of integration (with θ(t) = qt (0 < q< 1, t ≥ 0) being an important special case), and (ii) to point, by means of a list of open problems, to areas in the numerical analysis of such Volterra functional equations where more research needs to be carried out.

Cite this article

Hermann BRUNNER . Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays[J]. Frontiers of Mathematics in China, 2009 , 4(1) : 3 -22 . DOI: 10.1007/s11464-009-0001-0

1
Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math (in press)

2
Ali I, Brunner H, Tang T. Spectral methods for pantograph differential and integral equations with multiple delays (to appear)

3
Andreoli G. Sulle equazioni integrali. Rend Circ Mat Palermo, 1914, 37: 76-112

DOI

4
Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal, 2002, 22: 529-536

DOI

5
Bellen A, Brunner H, Maset S, Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT, 2006, 46: 229-247

DOI

6
Bellen A, Guglielmi N, Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl Numer Math, 1997, 24: 275-293

DOI

7
Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Oxford University Press, 2003

DOI

8
Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT, 1997, 37: 1-12

DOI

9
Brunner H. The numerical analysis of functional integral and integro-differential equations of Volterra type. Acta Numerica, 2004, 55-145

10
Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, Vol 15. Cambridge: Cambridge University Press, 2004

11
Brunner H. Recent advances in the numerical analysis of Volterra functional differential equations with variable delays. J Comput Appl Math, 2008 (in press)

DOI

12
Brunner H. On the regularity of solutions for Volterra functional equations with weakly singular kernels and vanishing delays (to appear)

13
Brunner H. Collocation methods for pantograph-type Volterra functional equations with multiple delays. Comput Methods Appl Math, 2008 (in press)

14
Brunner H, Hu Q-Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal, 2005, 43: 1934-1949

DOI

15
Brunner H, Hu Q-Y. Optimal superconvergence results for delay integro-differential equations of pantograph type. SIAM J Numer Anal, 2007, 45: 986-1004

DOI

16
Brunner H, Maset S. Time transformations for delay differential equations. Discrete Contin Dyn Syst (in press)

17
Brunner H, Maset S. Time transformations for state-dependent delay differential equations. Preprint, 2008

18
Brunner H, Pedas A, Vainikko G. The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math Comp, 1999, 68: 1079-1095

DOI

19
Brunner H, Pedas A, Vainikko G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J Numer Anal, 2001, 39: 957-982

DOI

20
Buhmann M D, Iserles A. Numerical analysis of functional equations with a variable delay. In: Griffths D F, Watson G A, eds. Numerical Analysis (Dundee 1991). Pitman Res Notes Math Ser, 260. Harlow: Longman Scientific & Technical, 1992, 17-33

21
Buhmann M D, Iserles A. On the dynamics of a discretized neutral equation. IMA J Numer Anal, 1992, 12: 339-363

DOI

22
Buhmann M D, Iserles A. Stability of the discretized pantograph differential equation. Math Comp, 1993, 60: 575-589

DOI

23
Buhmann M, Iserles A, Nørsett S P. Runge-Kutta methods for neutral differential equations. In: Agarwal R P, ed. Contributions in Numerical Mathematics (Singapore 1993). River Edge: World Scientific Publ, 1993, 85-98

24
Carvalho L A V, Cooke K L. Collapsible backward continuation and numerical approximations in a functional differential equation. J Differential Equations, 1998, 143: 96-109

DOI

25
Li G Chambers. Some properties of the functional equation ϕ(x)=f(x)+∫0λxg(x,y,ϕ(y))dy. Internat J Math Math Sci, 1990, 14: 27-44

26
Denisov A M, Korovin S V. On Volterra’s integral equation of the first kind. Moscow Univ Comput Math Cybernet, 1992, 3: 19-24

27
Denisov A M, Lorenzi A. On a special Volterra integral equation of the first kind. Boll Un Mat Ital B (7), 1995, 9: 443-457

28
Denisov A M, Lorenzi A. Existence results and regularization techniques for severely ill-posed integrofunctional equations. Boll Un Mat Ital B (7), 1997, 11: 713-732

29
Feldstein A, Iserles A, Levin D. Embedding of delay equations into an infinitedimensional ODE system. J Differential Equations, 1995, 117: 127-150

DOI

30
Feldstein A, Liu Y K. On neutral functional-differential equations with variable time delays. Math Proc Cambridge Phil Soc, 1998, 124: 371-384

DOI

31
Fox L, Mayers D F, Ockendon J R, Tayler A B. On a functional differential equation. J Inst Math Appl, 1971, 8: 271-307

DOI

32
Frederickson P O. Dirichlet solutions for certain functional differential equations. In: Urabe M, ed. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto 1971). Lecture Notes in Math, Vol 243. Berlin-Heidelberg: Springer-Verlag, 1971, 249-251

DOI

33
Frederickson P O. Global solutions to certain nonlinear functional differential equations. J Math Anal Appl, 1971, 33: 355-358

DOI

34
Gan S Q. Exact and discretized dissipativity of the pantograph equation. J Comput Math, 2007, 25: 81-88

35
Guglielmi N. Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory. IMA J Numer Anal, 2006, 26: 60-77

DOI

36
Guglielmi N, Zennaro M. Stability of one-leg θ-methods for the variable coeffcient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal, 2003, 23: 421-438

DOI

37
Huang C M, Vandewalle S. Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J Numer Anal, 2005, 42: 2020-2042

DOI

38
Iserles A. On the generalized pantograph functional differential equation. Europ J Appl Math, 1993, 4: 1-38

DOI

39
Iserles A. Numerical analysis of delay differential equations with variable delays. Ann Numer Math, 1994, 1: 133-152

40
Iserles A. On nonlinear delay-differential equations. Trans Amer Math Soc, 1994, 344: 441-477

DOI

41
Iserles A. Beyond the classical theory of computational ordinary differential equations. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis (York 1996). Oxford: Clarendon Press, 1997, 171-192

42
Iserles A, Liu Y K. On pantograph integro-differential equations. J Integral Equations Appl, 1994, 6: 213-237

DOI

43
Iserles A, Terj´eki J. Stability and asymptotic stability of functional-differential equations. J London Math Soc (2), 1995, 51: 559-572

44
Ishiwata E. On the attainable order of collocation methods for the neutral functional-differential equations with proportional delays. Computing, 2000, 64: 207-222

DOI

45
Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput, 2007, 187: 741-747

DOI

46
Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations. Numer Math, 1984, 43: 389-396

DOI

47
Kato T, McLeod J B. The functional-differential equation y′(x)=ay(λx)+by(x). Bull Amer Math Soc, 1971, 77: 891-937

DOI

48
Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numer Math, 1999, 84: 233-247

DOI

49
Lalesco T. Sur l’´equation de Volterra. J de Math (6), 1908, 4: 309-317

50
Lalesco T. Sur une ´equation int´egrale du type Volterra. C R Acad Sci Paris, 1911, 152: 579-580

51
Li D, Liu M Z. Asymptotic stability of numerical solution of pantograph delay differential equations. J Harbin Inst Tech, 1999, 31: 57-59 (in Chinese)

52
Li D, Liu M Z. The properties of exact solution of multi-pantograph delay differential equation. J Harbin Inst Tech, 2000, 32: 1-3 (in Chinese)

53
Liang J, Liu M Z. Stability of numerical solutions to pantograph delay systems. J Harbin Inst Tech, 1996, 28: 21-26 (in Chinese)

54
Liang J, Liu M Z. Numerical stability of θ-methods for pantograph delay differential equations. J Numer Methods Comput Appl, 1996, 12: 271-278 (in Chinese)

DOI

55
Liang J, Qiu S, Liu M Z. The stability of θ-methods for pantograph delay differential equations. Numer Math J Chinese Univ (Engl Ser), 1996, 5: 80-85

56
Liu M Z, Li D. Properties of analytic solution and numerical solution of multipantograph equation. Appl Math Comput, 2004, 155: 853-871

DOI

57
Liu M Z, Wang Z, Hu G. Asymptotic stability of numerical methods with constant stepsize for pantograph equations. BIT, 2005, 45: 743-759

DOI

58
Liu M Z, Yang Z W, Xu Y. The stability of modified Runge-Kutta methods for the pantograph equation. Math Comp, 2006, 75: 1201-1215

DOI

59
Liu Y K. Stability analysis of θ-methods for neutral functional-differential equations. Numer Math, 1995, 70: 473-485

DOI

60
Liu Y K. The linear q-difference equation y(x) = ay(qx) + f(x). Appl Math Lett, 1995, 8: 15-18

DOI

61
Liu Y K. On θ-methods for delay differential equations with infinite lag. J Comput Appl Math, 1996, 71: 177-190

DOI

62
Liu Y K. Asymptotic behaviour of functional-differential equations with proportional time delays. Europ J Appl Math, 1996, 7: 11-30

DOI

63
Liu Y K. Numerical investigation of the pantograph equation. Appl Numer Math, 1997, 24: 309-317

DOI

64
Ma S F, Yang Z W, Liu M Z. Hα-stability of modified Runge-Kutta methods for nonlinear neutral pantograph equations. J Math Anal Appl, 2007, 335: 1128-1142

DOI

65
Morris G R, Feldstein A, Bowen E W. The Phragmén-Lindelöf principle and a class of functional differential equations. In: Weiss L, ed. Ordinary Differential Equations (Washington, DC, 1971). New York: Academic Press, 1972, 513-540

66
Mure¸san V. On a class of Volterra integral equations with deviating argument. Studia Univ Babe¸s-Bolyai Math, 1999, XLIV: 47-54

67
Muroya Y, Ishiwata E, Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math, 2003, 152: 347-366

DOI

68
Ockendon J R, Tayler A B. The dynamics of a current collection system for an electric locomotive. Proc Roy Soc London Ser A, 1971, 322: 447-468

DOI

69
Pukhnacheva T P. A functional equation with contracting argument. Siberian Math J, 1990, 31: 365-367

DOI

70
Qiu L, Mitsui T, Kuang J X. The numerical stability of the θ-method for delay differential equations with many variable delays. J Comput Math, 1999, 17: 523-532

71
Si J G, Cheng S S. Analytic solutions of a functional differential equation with proportional delays. Bull Korean Math Soc, 2002, 39: 225-236

72
Takama N, Muroya Y, Ishiwata E. On the attainable order of collocation methods for the delay differential equations with proportional delay. BIT, 2000, 40: 374-394

DOI

73
Terj´eki J. Representation of the solutions to linear pantograph equations. Acta Sci Math (Szeged), 1995, 60: 705-713

74
Volterra V. Sopra alcune questioni di inversione di integrali definite. Ann Mat Pura Appl, 1897, 25: 139-178

DOI

75
Volterra V. Le¸cons sur les équations int´égrales. Paris: Gauthier-Villars, 1913 (VFIEs with proportional delays as limits of integration are treated on pp. 92-101)

76
Xu Y, Zhao J, Liu M. ℋ-stability of Runge-Kutta methods with variable stepsize for systems of pantograph equations. J Comput Math, 2004, 22: 727-734

77
Yu Y, Li S. Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations. J Comput Math, 2005, 23: 351-356

78
Zhang C, Sun G. The discrete dynamics of nonlinear infinite-delay differential equations. Appl Math Lett, 2002, 15: 521-526

DOI

79
Zhang C, Sun G. Boundedness and asymptotic stability of multistep methods for pantograph equations. J Comput Math, 2004, 22: 447-456

80
Zhao J J, Cao W R, Liu M Z. Asymptotic stability of Runge-Kutta methods for the pantograph equations. J Comput Math, 2004, 22: 523-534

81
Zhao J J, Xu Y, Qiao Y. The attainable order of the collocation method for doublepantograph delay differential equation. Numer Math J Chinese Univ, 2005, 27: 297-308 (in Chinese)

Options
Outlines

/