Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays

Hermann Brunner

Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 3-22.

PDF(238 KB)
Front. Math. China All Journals
PDF(238 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 3-22. DOI: 10.1007/s11464-009-0001-0
Survey Article
SURVEY ARTICLE

Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays

Author information +
History +

Abstract

The aims of this paper are (i) to present a survey of recent advances in the analysis of superconvergence of collocation solutions for linear Volterra-type functional integral and integro-differential equations with delay functions θ(t) vanishing at the initial point of the interval of integration (with ia(t) = qt (0 < q < 1, t ⩾ 0) being an important special case), and (ii) to point, by means of a list of open problems, to areas in the numerical analysis of such Volterra functional equations where more research needs to be carried out.

Keywords

Volterra functional integral and integro-differential equation / vanishing delay / pantograph equation / collocation solution / optimal order of superconvergence

Cite this article

Download citation ▾
Hermann Brunner. Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays. Front. Math. China, 2009, 4(1): 3‒22 https://doi.org/10.1007/s11464-009-0001-0
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math (in press)
[2.]
Ali I, Brunner H, Tang T. Spectral methods for pantograph differential and integral equations with multiple delays (to appear)
[3.]
Andreoli G. Sulle equazioni integrali. Rend Circ Mat Palermo, 1914, 37: 76-112.
CrossRef Google scholar
[4.]
Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal, 2002, 22: 529-536.
CrossRef Google scholar
[5.]
Bellen A., Brunner H., Maset S., Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT, 2006, 46: 229-247.
CrossRef Google scholar
[6.]
Bellen A., Guglielmi N., Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl Numer Math, 1997, 24: 275-293.
[7.]
Bellen A., Zennaro M. Numerical Methods for Delay Differential Equations, 2003, Oxford: Oxford University Press
CrossRef Google scholar
[8.]
Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT, 1997, 37: 1-12.
CrossRef Google scholar
[9.]
Brunner H. The numerical analysis of functional integral and integro-differential equations of Volterra type. Acta Numerica, 2004, 55–145
[10.]
Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, 2004, Cambridge: Cambridge University Press.
[11.]
Brunner H. Recent advances in the numerical analysis of Volterra functional differential equations with variable delays. J Comput Appl Math, 2008 (in press)
[12.]
Brunner H. On the regularity of solutions for Volterra functional equations with weakly singular kernels and vanishing delays (to appear)
[13.]
Brunner H. Collocation methods for pantograph-type Volterra functional equations with multiple delays. Comput Methods Appl Math, 2008 (in press)
[14.]
Brunner H., Hu Q. -Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal, 2005, 43: 1934-1949.
CrossRef Google scholar
[15.]
Brunner H., Hu Q. -Y. Optimal superconvergence results for delay integro-differential equations of pantograph type. SIAM J Numer Anal, 2007, 45: 986-1004.
CrossRef Google scholar
[16.]
Brunner H, Maset S. Time transformations for delay differential equations. Discrete Contin Dyn Syst (in press)
[17.]
Brunner H, Maset S. Time transformations for state-dependent delay differential equations. Preprint, 2008
[18.]
Brunner H., Pedas A., Vainikko G. The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math Comp, 1999, 68: 1079-1095.
CrossRef Google scholar
[19.]
Brunner H., Pedas A., Vainikko G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J Numer Anal, 2001, 39: 957-982.
CrossRef Google scholar
[20.]
Buhmann M. D., Iserles A. Griffiths D. F., Watson G. A. Numerical analysis of functional equations with a variable delay. Numerical Analysis (Dundee 1991), 1992, Harlow: Longman Scientific & Technical, 17-33.
[21.]
Buhmann M. D., Iserles A. On the dynamics of a discretized neutral equation. IMA J Numer Anal, 1992, 12: 339-363.
CrossRef Google scholar
[22.]
Buhmann M. D., Iserles A. Stability of the discretized pantograph differential equation. Math Comp, 1993, 60: 575-589.
CrossRef Google scholar
[23.]
Buhmann M., Iserles A., Nørsett S. P. Agarwal R. P. Runge-Kutta methods for neutral differential equations. Contributions in Numerical Mathematics (Singapore 1993), 1993, River Edge: World Scientific Publ, 85-98.
[24.]
Carvalho L. A. V., Cooke K. L. Collapsible backward continuation and numerical approximations in a functional differential equation. J Differential Equations, 1998, 143: 96-109.
CrossRef Google scholar
[25.]
Li G. C. Some properties of the functional equation φ(x) = ƒ(x)+ 0 λxg(x, y, φ(y))dy. Internat J Math Math Sci, 1990, 14: 27-44.
[26.]
Denisov A. M., Korovin S. V. On Volterra’s integral equation of the first kind. Moscow Univ Comput Math Cybernet, 1992, 3: 19-24.
[27.]
Denisov A. M., Lorenzi A. On a special Volterra integral equation of the first kind. Boll Un Mat Ital B, 1995, 9: 443-457.
[28.]
Denisov A. M., Lorenzi A. Existence results and regularization techniques for severely ill-posed integrofunctional equations. Boll Un Mat Ital B, 1997, 11: 713-732.
[29.]
Feldstein A., Iserles A., Levin D. Embedding of delay equations into an infinitedimensional ODE system. J Differential Equations, 1995, 117: 127-150.
CrossRef Google scholar
[30.]
Feldstein A., Liu Y. K. On neutral functional-differential equations with variable time delays. Math Proc Cambridge Phil Soc, 1998, 124: 371-384.
CrossRef Google scholar
[31.]
Fox L., Mayers D. F., Ockendon J. R., Tayler A. B. On a functional differential equation. J Inst Math Appl, 1971, 8: 271-307.
CrossRef Google scholar
[32.]
Frederickson P. O. Urabe M. Dirichlet solutions for certain functional differential equations. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto 1971), 1971, Berlin-Heidelberg: Springer-Verlag, 249-251.
CrossRef Google scholar
[33.]
Frederickson P. O. Global solutions to certain nonlinear functional differential equations. J Math Anal Appl, 1971, 33: 355-358.
CrossRef Google scholar
[34.]
Gan S. Q. Exact and discretized dissipativity of the pantograph equation. J Comput Math, 2007, 25: 81-88.
[35.]
Guglielmi N. Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory. IMA J Numer Anal, 2006, 26: 60-77.
CrossRef Google scholar
[36.]
Guglielmi N., Zennaro M. Stability of one-leg θ-methods for the variable coefficient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal, 2003, 23: 421-438.
CrossRef Google scholar
[37.]
Huang C. M., Vandewalle S. Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J Numer Anal, 2005, 42: 2020-2042.
CrossRef Google scholar
[38.]
Iserles A. On the generalized pantograph functional differential equation. Europ J Appl Math, 1993, 4: 1-38.
[39.]
Iserles A. Numerical analysis of delay differential equations with variable delays. Ann Numer Math, 1994, 1: 133-152.
[40.]
Iserles A. On nonlinear delay-differential equations. Trans Amer Math Soc, 1994, 344: 441-477.
CrossRef Google scholar
[41.]
Iserles A. Duff I. S., Watson G. A. Beyond the classical theory of computational ordinary differential equations. The State of the Art in Numerical Analysis (York 1996), 1997, Oxford: Clarendon Press, 171-192.
[42.]
Iserles A., Liu Y. K. On pantograph integro-differential equations. J Integral Equations Appl, 1994, 6: 213-237.
CrossRef Google scholar
[43.]
Iserles A., Terjéki J. Stability and asymptotic stability of functional-differential equations. J London Math Soc, 1995, 51(2): 559-572.
[44.]
Ishiwata E. On the attainable order of collocation methods for the neutral functionaldifferential equations with proportional delays. Computing, 2000, 64: 207-222.
CrossRef Google scholar
[45.]
Ishiwata E., Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput, 2007, 187: 741-747.
CrossRef Google scholar
[46.]
Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations. Numer Math, 1984, 43: 389-396.
CrossRef Google scholar
[47.]
Kato T., McLeod J. B. The functional-differential equation y′(x) = ayx) + by(x). Bull Amer Math Soc, 1971, 77: 891-937.
CrossRef Google scholar
[48.]
Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numer Math, 1999, 84: 233-247.
CrossRef Google scholar
[49.]
Lalesco T. Sur l’équation de Volterra. J de Math, 1908, 4(6): 309-317.
[50.]
Lalesco T. Sur une équation intégrale du type Volterra. C R Acad Sci Paris, 1911, 152: 579-580.
[51.]
Li D., Liu M. Z. Asymptotic stability of numerical solution of pantograph delay differential equations. J Harbin Inst Tech, 1999, 31: 57-59.
[52.]
Li D., Liu M. Z. The properties of exact solution of multi-pantograph delay differential equation. J Harbin Inst Tech, 2000, 32: 1-3.
[53.]
Liang J., Liu M. Z. Stability of numerical solutions to pantograph delay systems. J Harbin Inst Tech, 1996, 28: 21-26.
[54.]
Liang J., Liu M. Z. Numerical stability of θ-methods for pantograph delay differential equations. J Numer Methods Comput Appl, 1996, 12: 271-278.
CrossRef Google scholar
[55.]
Liang J., Qiu S., Liu M. Z. The stability of θ-methods for pantograph delay differential equations. Numer Math J Chinese Univ (Engl Ser), 1996, 5: 80-85.
[56.]
Liu M. Z., Li D. Properties of analytic solution and numerical solution of multipantograph equation. Appl Math Comput, 2004, 155: 853-871.
CrossRef Google scholar
[57.]
Liu M. Z., Wang Z., Hu G. Asymptotic stability of numerical methods with constant stepsize for pantograph equations. BIT, 2005, 45: 743-759.
CrossRef Google scholar
[58.]
Liu M. Z., Yang Z. W., Xu Y. The stability of modified Runge-Kutta methods for the pantograph equation. Math Comp, 2006, 75: 1201-1215.
CrossRef Google scholar
[59.]
Liu Y. K. Stability analysis of θ-methods for neutral functional-differential equations. Numer Math, 1995, 70: 473-485.
CrossRef Google scholar
[60.]
Liu Y. K. The linear q-difference equation y(x) = ay(qx) + ƒ(x). Appl Math Lett, 1995, 8: 15-18.
CrossRef Google scholar
[61.]
Liu Y. K. On θ-methods for delay differential equations with infinite lag. J Comput Appl Math, 1996, 71: 177-190.
CrossRef Google scholar
[62.]
Liu Y. K. Asymptotic behaviour of functional-differential equations with proportional time delays. Europ J Appl Math, 1996, 7: 11-30.
[63.]
Liu Y. K. Numerical investigation of the pantograph equation. Appl Numer Math, 1997, 24: 309-317.
CrossRef Google scholar
[64.]
Ma S. F., Yang Z. W., Liu M. Z. Hα-stability of modified Runge-Kutta methods for nonlinear neutral pantograph equations. J Math Anal Appl, 2007, 335: 1128-1142.
CrossRef Google scholar
[65.]
Morris G. R., Feldstein A., Bowen E. W. T. Weiss L. Phragmén-Lindelöf principle and a class of functional differential equations. Ordinary Differential Equations (Washington, DC, 1971), 1972, New York: Academic Press, 513-540.
[66.]
Mureşan V. On a class of Volterra integral equations with deviating argument. Studia Univ Babeş-Bolyai Math, 1999, XLIV: 47-54.
[67.]
Muroya Y., Ishiwata E., Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math, 2003, 152: 347-366.
CrossRef Google scholar
[68.]
Ockendon J. R., Tayler A. B. The dynamics of a current collection system for an electric locomotive. Proc Roy Soc London Ser A, 1971, 322: 447-468.
CrossRef Google scholar
[69.]
Pukhnacheva T. P. A functional equation with contracting argument. Siberian Math J, 1990, 31: 365-367.
CrossRef Google scholar
[70.]
Qiu L., Mitsui T., Kuang J. X. The numerical stability of the θ-method for delay differential equations with many variable delays. J Comput Math, 1999, 17: 523-532.
[71.]
Si J. G., Cheng S. S. Analytic solutions of a functional differential equation with proportional delays. Bull Korean Math Soc, 2002, 39: 225-236.
[72.]
Takama N., Muroya Y., Ishiwata E. On the attainable order of collocation methods for the delay differential equations with proportional delay. BIT, 2000, 40: 374-394.
CrossRef Google scholar
[73.]
Terjéki J. Representation of the solutions to linear pantograph equations. Acta Sci Math (Szeged), 1995, 60: 705-713.
[74.]
Volterra V. Sopra alcune questioni di inversione di integrali definite. Ann Mat Pura Appl, 1897, 25: 139-178.
CrossRef Google scholar
[75.]
Volterra V. Leçcons sur les équations intégrales, 1913, Paris: Gauthier-Villars, 92-101.
[76.]
Xu Y., Zhao J., Liu M. H-stability of Runge-Kutta methods with variable stepsize for systems of pantograph equations. J Comput Math, 2004, 22: 727-734.
[77.]
Yu Y., Li S. Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations. J Comput Math, 2005, 23: 351-356.
[78.]
Zhang C., Sun G. The discrete dynamics of nonlinear infinite-delay differential equations. Appl Math Lett, 2002, 15: 521-526.
CrossRef Google scholar
[79.]
Zhang C., Sun G. Boundedness and asymptotic stability of multistep methods for pantograph equations. J Comput Math, 2004, 22: 447-456.
[80.]
Zhao J. J., Cao W. R., Liu M. Z. Asymptotic stability of Runge-Kutta methods for the pantograph equations. J Comput Math, 2004, 22: 523-534.
[81.]
Zhao J. J., Xu Y., Qiao Y. The attainable order of the collocation method for double-pantograph delay differential equation. Numer Math J Chinese Univ, 2005, 27: 297-308.
AI Summary AI Mindmap
PDF(238 KB)

731

Accesses

26

Citations

Detail

Sections
Recommended

/