RESEARCH ARTICLE

Deviation inequalities and moderate deviations for estimators of parameters in TAR models

  • Jun FAN 1 ,
  • Fuqing GAO , 2
Expand
  • 1. School of Science, Hebei University of Technology, Tianjin 300130, China
  • 2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received date: 31 Jul 2010

Accepted date: 03 Mar 2011

Published date: 01 Dec 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we establish some deviation inequalities and the moderate deviation principles for the least squares estimators of the parameters in the threshold autoregressive model under the assumption that the noise random variable satisfies a logarithmic Sobolev inequality.

Cite this article

Jun FAN , Fuqing GAO . Deviation inequalities and moderate deviations for estimators of parameters in TAR models[J]. Frontiers of Mathematics in China, 2011 , 6(6) : 1067 -1083 . DOI: 10.1007/s11464-011-0118-9

1
Bercu B, Gamboa F, Rouault A. Large deviations for quadratic forms of Gaussian stationary processes. Stoch Proc Appl, 1997, 71: 75-90

DOI

2
Blower G, Bolley F. Concentration of measure on product spaces with applications to Markov processes. Studia Math, 2006, 175: 47-72

DOI

3
Bobkov S G, Götze F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J Funct Anal, 1999, 163: 1-28

DOI

4
Bryc W, Dembo A. Large deviations for quadratic functionals of Gaussian functionals. J Theor Prob, 1997, 10: 307-332

DOI

5
Chen R, Tsay R S. On the ergodicity of TAR(1) processes. Ann Appl Probab, 1991, 1: 613-634

DOI

6
Dembo A, Zeitouni O. Large Deviation Techniques and Applications. 2nd ed. New York: Springer-Verlag, 1997

7
Deuschel J D, Stroock D W. Large Deviations. Boston: Academic Press, Inc, 1989

8
Djellout H, Guillin A, Wu L. Moderate deviations for non-linear functionals and empirical spectral density of moving average processes. Ann Inst H Poincaré Probab Statist, 2006, 42: 393-416

9
Fan J Q, Yao Q W. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer, 2003

DOI

10
Ledoux M. Concentration of measure and logarithmic Sobolev inequalities. In: Séminaire de probabilités XXXIII. Lecture Notes in Mathematics, Vol 1709. Berlin: Springer, 1999, 120-216

11
Ling S, Tong H, Li D. Ergodicity and invertibility of threshold MA models. Bernoulli, 2007, 13: 161-168

DOI

12
Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. New York: Springer-Verlag, 1993

13
Petruccelli J D, Woolford S W. A threshold AR(1) model. J Appl Prob, 1984, 21: 270-286

DOI

14
Puhalskii A A. The method of stochastic exponentials for large deviations. Stochast Proc Appl, 1994, 54: 45-70

DOI

15
Rothaus O S. Logarithmic Sobolev inequalities and the growth of Lp norms. Proc Amer Math Soc, 1998, 126: 2309-2314

DOI

16
Tong H. Threshold Models in Non-linear Time Series Analysis. Lecture Notes in Statistics, Vol 21. Berlin: Springer-Verlag, 1983

Options
Outlines

/