Deviation inequalities and moderate deviations for estimators of parameters in TAR models

Jun Fan , Fuqing Gao

Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1067 -1083.

PDF (196KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1067 -1083. DOI: 10.1007/s11464-011-0118-9
Research Article
RESEARCH ARTICLE

Deviation inequalities and moderate deviations for estimators of parameters in TAR models

Author information +
History +
PDF (196KB)

Abstract

In this paper, we establish some deviation inequalities and the moderate deviation principles for the least squares estimators of the parameters in the threshold autoregressive model under the assumption that the noise random variable satisfies a logarithmic Sobolev inequality.

Keywords

Threshold autoregressive model / least square estimator / moderate deviations / logarithmic Sobolev inequality

Cite this article

Download citation ▾
Jun Fan, Fuqing Gao. Deviation inequalities and moderate deviations for estimators of parameters in TAR models. Front. Math. China, 2011, 6(6): 1067-1083 DOI:10.1007/s11464-011-0118-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bercu B., Gamboa F., Rouault A. Large deviations for quadratic forms of Gaussian stationary processes. Stoch Proc Appl, 1997, 71, 75-90

[2]

Blower G., Bolley F. Concentration of measure on product spaces with applications to Markov processes. Studia Math, 2006, 175, 47-72

[3]

Bobkov S. G., Götze F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J Funct Anal, 1999, 163, 1-28

[4]

Bryc W., Dembo A. Large deviations for quadratic functionals of Gaussian functionals. J Theor Prob, 1997, 10, 307-332

[5]

Chen R., Tsay R. S. On the ergodicity of TAR(1) processes. Ann Appl Probab, 1991, 1, 613-634

[6]

Dembo A., Zeitouni O. Large Deviation Techniques and Applications, 1997, 2nd ed, New York: Springer-Verlag.

[7]

Deuschel J. D., Stroock D. W. Large Deviations, 1989, Boston: Academic Press, Inc.

[8]

Djellout H., Guillin A., Wu L. Moderate deviations for non-linear functionals and empirical spectral density of moving average processes. Ann Inst H Poincaré Probab Statist, 2006, 42, 393-416

[9]

Fan J. Q., Yao Q. W. Nonlinear Time Series: Nonparametric and Parametric Methods, 2003, New York: Springer

[10]

Ledoux M. Concentration of measure and logarithmic Sobolev inequalities. Séminaire de probabilités XXXIII. Lecture Notes in Mathematics, Vol 1709, 1999, Berlin: Springer 120-216

[11]

Ling S., Tong H., Li D. Ergodicity and invertibility of threshold MA models. Bernoulli, 2007, 13, 161-168

[12]

Meyn S. P., Tweedie R. L. Markov Chains and Stochastic Stability, 1993, New York: Springer-Verlag.

[13]

Petruccelli J. D., Woolford S. W. A threshold AR(1) model. J Appl Prob, 1984, 21, 270-286

[14]

Puhalskii A. A. The method of stochastic exponentials for large deviations. Stochast Proc Appl, 1994, 54, 45-70

[15]

Rothaus O. S. Logarithmic Sobolev inequalities and the growth of L p norms. Proc Amer Math Soc, 1998, 126, 2309-2314

[16]

Tong H. Threshold Models in Non-linear Time Series Analysis. Lecture Notes in Statistics, Vol 21, 1983, Berlin: Springer-Verlag.

AI Summary AI Mindmap
PDF (196KB)

1000

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/