Deviation inequalities and moderate deviations for estimators of parameters in TAR models
Jun FAN, Fuqing GAO
Deviation inequalities and moderate deviations for estimators of parameters in TAR models
In this paper, we establish some deviation inequalities and the moderate deviation principles for the least squares estimators of the parameters in the threshold autoregressive model under the assumption that the noise random variable satisfies a logarithmic Sobolev inequality.
Threshold autoregressive model / least square estimator / moderate deviations / logarithmic Sobolev inequality
[1] |
Bercu B, Gamboa F, Rouault A. Large deviations for quadratic forms of Gaussian stationary processes. Stoch Proc Appl, 1997, 71: 75-90
CrossRef
Google scholar
|
[2] |
Blower G, Bolley F. Concentration of measure on product spaces with applications to Markov processes. Studia Math, 2006, 175: 47-72
CrossRef
Google scholar
|
[3] |
Bobkov S G, Götze F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J Funct Anal, 1999, 163: 1-28
CrossRef
Google scholar
|
[4] |
Bryc W, Dembo A. Large deviations for quadratic functionals of Gaussian functionals. J Theor Prob, 1997, 10: 307-332
CrossRef
Google scholar
|
[5] |
Chen R, Tsay R S. On the ergodicity of TAR(1) processes. Ann Appl Probab, 1991, 1: 613-634
CrossRef
Google scholar
|
[6] |
Dembo A, Zeitouni O. Large Deviation Techniques and Applications. 2nd ed. New York: Springer-Verlag, 1997
|
[7] |
Deuschel J D, Stroock D W. Large Deviations. Boston: Academic Press, Inc, 1989
|
[8] |
Djellout H, Guillin A, Wu L. Moderate deviations for non-linear functionals and empirical spectral density of moving average processes. Ann Inst H Poincaré Probab Statist, 2006, 42: 393-416
|
[9] |
Fan J Q, Yao Q W. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer, 2003
CrossRef
Google scholar
|
[10] |
Ledoux M. Concentration of measure and logarithmic Sobolev inequalities. In: Séminaire de probabilités XXXIII. Lecture Notes in Mathematics, Vol 1709. Berlin: Springer, 1999, 120-216
|
[11] |
Ling S, Tong H, Li D. Ergodicity and invertibility of threshold MA models. Bernoulli, 2007, 13: 161-168
CrossRef
Google scholar
|
[12] |
Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. New York: Springer-Verlag, 1993
|
[13] |
Petruccelli J D, Woolford S W. A threshold AR(1) model. J Appl Prob, 1984, 21: 270-286
CrossRef
Google scholar
|
[14] |
Puhalskii A A. The method of stochastic exponentials for large deviations. Stochast Proc Appl, 1994, 54: 45-70
CrossRef
Google scholar
|
[15] |
Rothaus O S. Logarithmic Sobolev inequalities and the growth of Lp norms. Proc Amer Math Soc, 1998, 126: 2309-2314
CrossRef
Google scholar
|
[16] |
Tong H. Threshold Models in Non-linear Time Series Analysis. Lecture Notes in Statistics, Vol 21. Berlin: Springer-Verlag, 1983
|
/
〈 | 〉 |