Deviation inequalities and moderate deviations for estimators of parameters in TAR models

Jun FAN, Fuqing GAO

PDF(196 KB)
PDF(196 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1067-1083. DOI: 10.1007/s11464-011-0118-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Deviation inequalities and moderate deviations for estimators of parameters in TAR models

Author information +
History +

Abstract

In this paper, we establish some deviation inequalities and the moderate deviation principles for the least squares estimators of the parameters in the threshold autoregressive model under the assumption that the noise random variable satisfies a logarithmic Sobolev inequality.

Keywords

Threshold autoregressive model / least square estimator / moderate deviations / logarithmic Sobolev inequality

Cite this article

Download citation ▾
Jun FAN, Fuqing GAO. Deviation inequalities and moderate deviations for estimators of parameters in TAR models. Front Math Chin, 2011, 6(6): 1067‒1083 https://doi.org/10.1007/s11464-011-0118-9

References

[1]
Bercu B, Gamboa F, Rouault A. Large deviations for quadratic forms of Gaussian stationary processes. Stoch Proc Appl, 1997, 71: 75-90
CrossRef Google scholar
[2]
Blower G, Bolley F. Concentration of measure on product spaces with applications to Markov processes. Studia Math, 2006, 175: 47-72
CrossRef Google scholar
[3]
Bobkov S G, Götze F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J Funct Anal, 1999, 163: 1-28
CrossRef Google scholar
[4]
Bryc W, Dembo A. Large deviations for quadratic functionals of Gaussian functionals. J Theor Prob, 1997, 10: 307-332
CrossRef Google scholar
[5]
Chen R, Tsay R S. On the ergodicity of TAR(1) processes. Ann Appl Probab, 1991, 1: 613-634
CrossRef Google scholar
[6]
Dembo A, Zeitouni O. Large Deviation Techniques and Applications. 2nd ed. New York: Springer-Verlag, 1997
[7]
Deuschel J D, Stroock D W. Large Deviations. Boston: Academic Press, Inc, 1989
[8]
Djellout H, Guillin A, Wu L. Moderate deviations for non-linear functionals and empirical spectral density of moving average processes. Ann Inst H Poincaré Probab Statist, 2006, 42: 393-416
[9]
Fan J Q, Yao Q W. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer, 2003
CrossRef Google scholar
[10]
Ledoux M. Concentration of measure and logarithmic Sobolev inequalities. In: Séminaire de probabilités XXXIII. Lecture Notes in Mathematics, Vol 1709. Berlin: Springer, 1999, 120-216
[11]
Ling S, Tong H, Li D. Ergodicity and invertibility of threshold MA models. Bernoulli, 2007, 13: 161-168
CrossRef Google scholar
[12]
Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. New York: Springer-Verlag, 1993
[13]
Petruccelli J D, Woolford S W. A threshold AR(1) model. J Appl Prob, 1984, 21: 270-286
CrossRef Google scholar
[14]
Puhalskii A A. The method of stochastic exponentials for large deviations. Stochast Proc Appl, 1994, 54: 45-70
CrossRef Google scholar
[15]
Rothaus O S. Logarithmic Sobolev inequalities and the growth of Lp norms. Proc Amer Math Soc, 1998, 126: 2309-2314
CrossRef Google scholar
[16]
Tong H. Threshold Models in Non-linear Time Series Analysis. Lecture Notes in Statistics, Vol 21. Berlin: Springer-Verlag, 1983

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(196 KB)

Accesses

Citations

Detail

Sections
Recommended

/