RESEARCH ARTICLE

Remarks on α-strongly irreducible ideals

  • M. J. NIKMEHR ,
  • F. FATAHI
Expand
  • Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran

Received date: 16 Sep 2010

Accepted date: 15 Aug 2011

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this article, we study α-irreducible and α-strongly irreducible ideals of a commutative ring. The relations between α-strongly irreducible ideals of a ring and α-strongly irreducible ideals of localization of the ring are also studied.

Cite this article

M. J. NIKMEHR , F. FATAHI . Remarks on α-strongly irreducible ideals[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 901 -910 . DOI: 10.1007/s11464-011-0156-3

1
Azizi A. Strongly irreducible ideals. J Aust Math Soc, 2008, 84: 145-154

DOI

2
Bernad B. Multiplication modules. J Algebra, 1981, 71: 174-178

DOI

3
El-Bast Z A, Smith P F. Multiplication modules. Commun Algebra, 1988, 16(4): 755-779

DOI

4
Heinzer W J, Ratliff L J, Rush D E. Strongly irreducible ideals. J Pure Appl Algebra, 2002, 166: 267-275

DOI

5
Lam T Y. Lectures on Modules and Rings. New York: Springer-Verlag, 1999

DOI

6
Lee D S, Lee H B. Some remarks on faithful multiplication modules. J Chungcheony Math Soc, 1993, 6: 131-137

7
Lu X. α-Irreducible and α-strongly irreducible ideals of a ring. Southeast Asian Bulletin of Mathematics, 2008, 32: 299-303

8
Nagata M. Local Rings. Interscience Tracts in Pure and Applied Math, 13. New York: Intersection, 1962

9
Sharp R T. Steps in Commutative Algebra. Cambridge; Cambridge University Press, 1994

10
Smith P F. Some remarks on multiplication modules. Arch Math, 1988, 50: 223-235

DOI

11
Stenström Bo. Rings of Quotients, An Introduction to Methods of Ring Theory. Berlin, Heidelberg, New York: Springer-Verlag, 1975

12
Zariski O, Samuel P. Commutative Algebra, Vol I. Princeton: D Van Nostrand Co, Inc, 1965

Options
Outlines

/