Frontiers of Mathematics in China >
Remarks on α-strongly irreducible ideals
Received date: 16 Sep 2010
Accepted date: 15 Aug 2011
Published date: 01 Oct 2011
Copyright
In this article, we study α-irreducible and α-strongly irreducible ideals of a commutative ring. The relations between α-strongly irreducible ideals of a ring and α-strongly irreducible ideals of localization of the ring are also studied.
M. J. NIKMEHR , F. FATAHI . Remarks on α-strongly irreducible ideals[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 901 -910 . DOI: 10.1007/s11464-011-0156-3
1 |
Azizi A. Strongly irreducible ideals. J Aust Math Soc, 2008, 84: 145-154
|
2 |
Bernad B. Multiplication modules. J Algebra, 1981, 71: 174-178
|
3 |
El-Bast Z A, Smith P F. Multiplication modules. Commun Algebra, 1988, 16(4): 755-779
|
4 |
Heinzer W J, Ratliff L J, Rush D E. Strongly irreducible ideals. J Pure Appl Algebra, 2002, 166: 267-275
|
5 |
Lam T Y. Lectures on Modules and Rings. New York: Springer-Verlag, 1999
|
6 |
Lee D S, Lee H B. Some remarks on faithful multiplication modules. J Chungcheony Math Soc, 1993, 6: 131-137
|
7 |
Lu X. α-Irreducible and α-strongly irreducible ideals of a ring. Southeast Asian Bulletin of Mathematics, 2008, 32: 299-303
|
8 |
Nagata M. Local Rings. Interscience Tracts in Pure and Applied Math, 13. New York: Intersection, 1962
|
9 |
Sharp R T. Steps in Commutative Algebra. Cambridge; Cambridge University Press, 1994
|
10 |
Smith P F. Some remarks on multiplication modules. Arch Math, 1988, 50: 223-235
|
11 |
Stenström Bo. Rings of Quotients, An Introduction to Methods of Ring Theory. Berlin, Heidelberg, New York: Springer-Verlag, 1975
|
12 |
Zariski O, Samuel P. Commutative Algebra, Vol I. Princeton: D Van Nostrand Co, Inc, 1965
|
/
〈 | 〉 |