Remarks on α-strongly irreducible ideals

M. J. NIKMEHR, F. FATAHI

PDF(101 KB)
PDF(101 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 901-910. DOI: 10.1007/s11464-011-0156-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Remarks on α-strongly irreducible ideals

Author information +
History +

Abstract

In this article, we study α-irreducible and α-strongly irreducible ideals of a commutative ring. The relations between α-strongly irreducible ideals of a ring and α-strongly irreducible ideals of localization of the ring are also studied.

Keywords

α-irreducible / α-strongly irreducible / primary ideal / faithful module / multiplication module

Cite this article

Download citation ▾
M. J. NIKMEHR, F. FATAHI. Remarks on α-strongly irreducible ideals. Front Math Chin, 2011, 6(5): 901‒910 https://doi.org/10.1007/s11464-011-0156-3

References

[1]
Azizi A. Strongly irreducible ideals. J Aust Math Soc, 2008, 84: 145-154
CrossRef Google scholar
[2]
Bernad B. Multiplication modules. J Algebra, 1981, 71: 174-178
CrossRef Google scholar
[3]
El-Bast Z A, Smith P F. Multiplication modules. Commun Algebra, 1988, 16(4): 755-779
CrossRef Google scholar
[4]
Heinzer W J, Ratliff L J, Rush D E. Strongly irreducible ideals. J Pure Appl Algebra, 2002, 166: 267-275
CrossRef Google scholar
[5]
Lam T Y. Lectures on Modules and Rings. New York: Springer-Verlag, 1999
CrossRef Google scholar
[6]
Lee D S, Lee H B. Some remarks on faithful multiplication modules. J Chungcheony Math Soc, 1993, 6: 131-137
[7]
Lu X. α-Irreducible and α-strongly irreducible ideals of a ring. Southeast Asian Bulletin of Mathematics, 2008, 32: 299-303
[8]
Nagata M. Local Rings. Interscience Tracts in Pure and Applied Math, 13. New York: Intersection, 1962
[9]
Sharp R T. Steps in Commutative Algebra. Cambridge; Cambridge University Press, 1994
[10]
Smith P F. Some remarks on multiplication modules. Arch Math, 1988, 50: 223-235
CrossRef Google scholar
[11]
Stenström Bo. Rings of Quotients, An Introduction to Methods of Ring Theory. Berlin, Heidelberg, New York: Springer-Verlag, 1975
[12]
Zariski O, Samuel P. Commutative Algebra, Vol I. Princeton: D Van Nostrand Co, Inc, 1965

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(101 KB)

Accesses

Citations

Detail

Sections
Recommended

/