Frontiers of Mathematics in China >
Transmutation theory of a coquasitriangular weak Hopf algebra
Received date: 24 Sep 2010
Accepted date: 21 Jun 2011
Published date: 01 Oct 2011
Copyright
Let H be a coquasitriangular quantum groupoid. In this paper, using a suitable idempotent element e in H, we prove that eH is a braided group (or a braided Hopf algebra in the category of right H-comodules), which generalizes Majid’s transmutation theory from a coquasitriangular Hopf algebra to a coquasitriangular weak Hopf algebra.
Key words: Quantum groupoid; weak Hopf algebra; braided group; braided Hopf algebra
Guohua LIU , Quanguo CHEN , Haixing ZHU . Transmutation theory of a coquasitriangular weak Hopf algebra[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 855 -869 . DOI: 10.1007/s11464-011-0149-2
1 |
Beattie M, Bulacu D. On the antipode of a coFrobenius (co)quasitriangular Hopf algebra. Commun Algebra, 1996, 37(9): 2981-2993
|
2 |
Böhm G, Nill F, Szlachanyi K. Weak Hopf algebras I. Integral theory and C∗-structure. J Algebra, 1999, 221(2): 385-438
|
3 |
Böhm G, Szlachanyi K. A coassociative C∗-quantum group with nonintegral dimensions. Lett Math Phys, 1996, 38(4): 437-456
|
4 |
Caenepeel S, Wang D G, Yin Y M. Yetter-Drinfld modules over weak Hopf algebras and the center construction. Ann Univ Ferrara-Sez VII-Sc Mat, 2005, 51: 69-98
|
5 |
Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann of Math, 2005, 162: 581-642
|
6 |
Gomez X, Majid S. Braided Lie algebras and bicovariant differential calculi over coquasitriangular Hopf algebras. J Algebra, 2003, 261(2): 334-388
|
7 |
Hayashi T. Face algebras and unitarity of SU(N)L-TQFT. Commun Math Phys, 1999, 203: 211-247
|
8 |
Hayashi T. Coribbon Hopf (face) Algebras generated by lattice models. J Algebra, 2000, 233(2): 614-641
|
9 |
Kassel C. Quantum Groups. Graduate Texts in Mathematics, Vol 155. New York: Springer, 1995
|
10 |
Majid S. Braided groups and algebraic quantum field theories. Lett Math Phys, 1991, 22: 167-175
|
11 |
Majid S. Transmutation theory and rank for quantum braided groups. Math Proc Camb Phil Soc, 1993, 113: 45-70
|
12 |
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
|
13 |
Nikshych D, Turaev V, Vainerman L. Invariants of knot and 3-manifolds from quantum groupoids. Topology Appl, 2003, 127: 91-123
|
14 |
Nill F. Axioms for Weak Bialgebras. 1998, <patent>ArXiv: QA/9805104V1</patent>
|
15 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
16 |
Yamanouchi T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras. J Algebra, 1994, 163: 9-50
|
/
〈 | 〉 |