RESEARCH ARTICLE

Transmutation theory of a coquasitriangular weak Hopf algebra

  • Guohua LIU 1 ,
  • Quanguo CHEN 2 ,
  • Haixing ZHU , 3
Expand
  • 1. Department of Mathematics, Southeast University, Nanjing 210096, China
  • 2. Department of Mathematics, Institute of Applied Mathematics, Yili Normal College, Yili 835000, China
  • 3. Department of Mathematics, University of Hasselt, Agoralaan, B-3590 Diepenbeek, Belgium

Received date: 24 Sep 2010

Accepted date: 21 Jun 2011

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let H be a coquasitriangular quantum groupoid. In this paper, using a suitable idempotent element e in H, we prove that eH is a braided group (or a braided Hopf algebra in the category of right H-comodules), which generalizes Majid’s transmutation theory from a coquasitriangular Hopf algebra to a coquasitriangular weak Hopf algebra.

Cite this article

Guohua LIU , Quanguo CHEN , Haixing ZHU . Transmutation theory of a coquasitriangular weak Hopf algebra[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 855 -869 . DOI: 10.1007/s11464-011-0149-2

1
Beattie M, Bulacu D. On the antipode of a coFrobenius (co)quasitriangular Hopf algebra. Commun Algebra, 1996, 37(9): 2981-2993

DOI

2
Böhm G, Nill F, Szlachanyi K. Weak Hopf algebras I. Integral theory and C-structure. J Algebra, 1999, 221(2): 385-438

DOI

3
Böhm G, Szlachanyi K. A coassociative C-quantum group with nonintegral dimensions. Lett Math Phys, 1996, 38(4): 437-456

DOI

4
Caenepeel S, Wang D G, Yin Y M. Yetter-Drinfld modules over weak Hopf algebras and the center construction. Ann Univ Ferrara-Sez VII-Sc Mat, 2005, 51: 69-98

5
Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann of Math, 2005, 162: 581-642

DOI

6
Gomez X, Majid S. Braided Lie algebras and bicovariant differential calculi over coquasitriangular Hopf algebras. J Algebra, 2003, 261(2): 334-388

DOI

7
Hayashi T. Face algebras and unitarity of SU(N)L-TQFT. Commun Math Phys, 1999, 203: 211-247

DOI

8
Hayashi T. Coribbon Hopf (face) Algebras generated by lattice models. J Algebra, 2000, 233(2): 614-641

DOI

9
Kassel C. Quantum Groups. Graduate Texts in Mathematics, Vol 155. New York: Springer, 1995

10
Majid S. Braided groups and algebraic quantum field theories. Lett Math Phys, 1991, 22: 167-175

DOI

11
Majid S. Transmutation theory and rank for quantum braided groups. Math Proc Camb Phil Soc, 1993, 113: 45-70

DOI

12
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995

DOI

13
Nikshych D, Turaev V, Vainerman L. Invariants of knot and 3-manifolds from quantum groupoids. Topology Appl, 2003, 127: 91-123

DOI

14
Nill F. Axioms for Weak Bialgebras. 1998, <patent>ArXiv: QA/9805104V1</patent>

15
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969

16
Yamanouchi T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras. J Algebra, 1994, 163: 9-50

DOI

Options
Outlines

/