Transmutation theory of a coquasitriangular weak Hopf algebra
Guohua LIU, Quanguo CHEN, Haixing ZHU
Transmutation theory of a coquasitriangular weak Hopf algebra
Let H be a coquasitriangular quantum groupoid. In this paper, using a suitable idempotent element e in H, we prove that eH is a braided group (or a braided Hopf algebra in the category of right H-comodules), which generalizes Majid’s transmutation theory from a coquasitriangular Hopf algebra to a coquasitriangular weak Hopf algebra.
Quantum groupoid / weak Hopf algebra / braided group / braided Hopf algebra
[1] |
Beattie M, Bulacu D. On the antipode of a coFrobenius (co)quasitriangular Hopf algebra. Commun Algebra, 1996, 37(9): 2981-2993
CrossRef
Google scholar
|
[2] |
Böhm G, Nill F, Szlachanyi K. Weak Hopf algebras I. Integral theory and C∗-structure. J Algebra, 1999, 221(2): 385-438
CrossRef
Google scholar
|
[3] |
Böhm G, Szlachanyi K. A coassociative C∗-quantum group with nonintegral dimensions. Lett Math Phys, 1996, 38(4): 437-456
CrossRef
Google scholar
|
[4] |
Caenepeel S, Wang D G, Yin Y M. Yetter-Drinfld modules over weak Hopf algebras and the center construction. Ann Univ Ferrara-Sez VII-Sc Mat, 2005, 51: 69-98
|
[5] |
Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann of Math, 2005, 162: 581-642
CrossRef
Google scholar
|
[6] |
Gomez X, Majid S. Braided Lie algebras and bicovariant differential calculi over coquasitriangular Hopf algebras. J Algebra, 2003, 261(2): 334-388
CrossRef
Google scholar
|
[7] |
Hayashi T. Face algebras and unitarity of SU(N)L-TQFT. Commun Math Phys, 1999, 203: 211-247
CrossRef
Google scholar
|
[8] |
Hayashi T. Coribbon Hopf (face) Algebras generated by lattice models. J Algebra, 2000, 233(2): 614-641
CrossRef
Google scholar
|
[9] |
Kassel C. Quantum Groups. Graduate Texts in Mathematics, Vol 155. New York: Springer, 1995
|
[10] |
Majid S. Braided groups and algebraic quantum field theories. Lett Math Phys, 1991, 22: 167-175
CrossRef
Google scholar
|
[11] |
Majid S. Transmutation theory and rank for quantum braided groups. Math Proc Camb Phil Soc, 1993, 113: 45-70
CrossRef
Google scholar
|
[12] |
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
CrossRef
Google scholar
|
[13] |
Nikshych D, Turaev V, Vainerman L. Invariants of knot and 3-manifolds from quantum groupoids. Topology Appl, 2003, 127: 91-123
CrossRef
Google scholar
|
[14] |
Nill F. Axioms for Weak Bialgebras. 1998, <patent>ArXiv: QA/9805104V1</patent>
|
[15] |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
[16] |
Yamanouchi T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras. J Algebra, 1994, 163: 9-50
CrossRef
Google scholar
|
/
〈 | 〉 |