Transmutation theory of a coquasitriangular weak Hopf algebra

Guohua LIU, Quanguo CHEN, Haixing ZHU

PDF(128 KB)
PDF(128 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 855-869. DOI: 10.1007/s11464-011-0149-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Transmutation theory of a coquasitriangular weak Hopf algebra

Author information +
History +

Abstract

Let H be a coquasitriangular quantum groupoid. In this paper, using a suitable idempotent element e in H, we prove that eH is a braided group (or a braided Hopf algebra in the category of right H-comodules), which generalizes Majid’s transmutation theory from a coquasitriangular Hopf algebra to a coquasitriangular weak Hopf algebra.

Keywords

Quantum groupoid / weak Hopf algebra / braided group / braided Hopf algebra

Cite this article

Download citation ▾
Guohua LIU, Quanguo CHEN, Haixing ZHU. Transmutation theory of a coquasitriangular weak Hopf algebra. Front Math Chin, 2011, 6(5): 855‒869 https://doi.org/10.1007/s11464-011-0149-2

References

[1]
Beattie M, Bulacu D. On the antipode of a coFrobenius (co)quasitriangular Hopf algebra. Commun Algebra, 1996, 37(9): 2981-2993
CrossRef Google scholar
[2]
Böhm G, Nill F, Szlachanyi K. Weak Hopf algebras I. Integral theory and C-structure. J Algebra, 1999, 221(2): 385-438
CrossRef Google scholar
[3]
Böhm G, Szlachanyi K. A coassociative C-quantum group with nonintegral dimensions. Lett Math Phys, 1996, 38(4): 437-456
CrossRef Google scholar
[4]
Caenepeel S, Wang D G, Yin Y M. Yetter-Drinfld modules over weak Hopf algebras and the center construction. Ann Univ Ferrara-Sez VII-Sc Mat, 2005, 51: 69-98
[5]
Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann of Math, 2005, 162: 581-642
CrossRef Google scholar
[6]
Gomez X, Majid S. Braided Lie algebras and bicovariant differential calculi over coquasitriangular Hopf algebras. J Algebra, 2003, 261(2): 334-388
CrossRef Google scholar
[7]
Hayashi T. Face algebras and unitarity of SU(N)L-TQFT. Commun Math Phys, 1999, 203: 211-247
CrossRef Google scholar
[8]
Hayashi T. Coribbon Hopf (face) Algebras generated by lattice models. J Algebra, 2000, 233(2): 614-641
CrossRef Google scholar
[9]
Kassel C. Quantum Groups. Graduate Texts in Mathematics, Vol 155. New York: Springer, 1995
[10]
Majid S. Braided groups and algebraic quantum field theories. Lett Math Phys, 1991, 22: 167-175
CrossRef Google scholar
[11]
Majid S. Transmutation theory and rank for quantum braided groups. Math Proc Camb Phil Soc, 1993, 113: 45-70
CrossRef Google scholar
[12]
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
CrossRef Google scholar
[13]
Nikshych D, Turaev V, Vainerman L. Invariants of knot and 3-manifolds from quantum groupoids. Topology Appl, 2003, 127: 91-123
CrossRef Google scholar
[14]
Nill F. Axioms for Weak Bialgebras. 1998, <patent>ArXiv: QA/9805104V1</patent>
[15]
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[16]
Yamanouchi T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras. J Algebra, 1994, 163: 9-50
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(128 KB)

Accesses

Citations

Detail

Sections
Recommended

/