Transmutation theory of a coquasitriangular weak Hopf algebra

Guohua Liu , Quanguo Chen , Haixing Zhu

Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 855 -869.

PDF (128KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 855 -869. DOI: 10.1007/s11464-011-0149-2
Research Article
RESEARCH ARTICLE

Transmutation theory of a coquasitriangular weak Hopf algebra

Author information +
History +
PDF (128KB)

Abstract

Let H be a coquasitriangular quantum groupoid. In this paper, using a suitable idempotent element e in H, we prove that eH is a braided group (or a braided Hopf algebra in the category of right H-comodules), which generalizes Majid’s transmutation theory from a coquasitriangular Hopf algebra to a coquasitriangular weak Hopf algebra.

Keywords

Quantum groupoid / weak Hopf algebra / braided group / braided Hopf algebra

Cite this article

Download citation ▾
Guohua Liu, Quanguo Chen, Haixing Zhu. Transmutation theory of a coquasitriangular weak Hopf algebra. Front. Math. China, 2011, 6(5): 855-869 DOI:10.1007/s11464-011-0149-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beattie M., Bulacu D. On the antipode of a coFrobenius (co)quasitriangular Hopf algebra. Commun Algebra, 1996, 37 9 2981-2993

[2]

Böhm G., Nill F., Szlachanyi K. Weak Hopf algebras I. Integral theory and C*-structure. J Algebra, 1999, 221 2 385-438

[3]

Böhm G., Szlachanyi K. A coassociative C*-quantum group with nonintegral dimensions. Lett Math Phys, 1996, 38 4 437-456

[4]

Caenepeel S., Wang D. G., Yin Y. M. Yetter-Drinfld modules over weak Hopf algebras and the center construction. Ann Univ Ferrara-Sez VII-Sc Mat, 2005, 51, 69-98

[5]

Etingof P., Nikshych D., Ostrik V. On fusion categories. Ann of Math, 2005, 162, 581-642

[6]

Gomez X., Majid S. Braided Lie algebras and bicovariant differential calculi over coquasitriangular Hopf algebras. J Algebra, 2003, 261 2 334-388

[7]

Hayashi T. Face algebras and unitarity of SU(N)L-TQFT. Commun Math Phys, 1999, 203, 211-247

[8]

Hayashi T. Coribbon Hopf (face) Algebras generated by lattice models. J Algebra, 2000, 233 2 614-641

[9]

Kassel C. Quantum Groups, 1995, New York: Springer.

[10]

Majid S. Braided groups and algebraic quantum field theories. Lett Math Phys, 1991, 22, 167-175

[11]

Majid S. Transmutation theory and rank for quantum braided groups. Math Proc Camb Phil Soc, 1993, 113, 45-70

[12]

Majid S. Foundations of Quantum Group Theory, 1995, Cambridge: Cambridge Univ Press

[13]

Nikshych D., Turaev V., Vainerman L. Invariants of knot and 3-manifolds from quantum groupoids. Topology Appl, 2003, 127, 91-123

[14]

Nill F. Axioms for Weak Bialgebras. 1998, ArXiv: QA/9805104V1

[15]

Sweedler M. E. Hopf Algebras, 1969, New York: Benjamin.

[16]

Yamanouchi T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras. J Algebra, 1994, 163, 9-50

AI Summary AI Mindmap
PDF (128KB)

823

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/