RESEARCH ARTICLE

On minimal non-MSN-groups

  • Pengfei GUO 1,2 ,
  • Xiuyun GUO , 3
Expand
  • 1. Department of Mathematics, Lianyungang Teacher’s College, Lianyungang 222006, China
  • 2. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
  • 3. Department of Mathematics, Shanghai University, Shanghai 200444, China

Received date: 19 Aug 2010

Accepted date: 19 Feb 2011

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A finite group G is called an MSN-group if all maximal subgroups of the Sylow subgroups of G are subnormal in G. In this paper, we determinate the structure of non-MSN-groups in which all of whose proper subgroups are MSN-groups.

Cite this article

Pengfei GUO , Xiuyun GUO . On minimal non-MSN-groups[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 847 -854 . DOI: 10.1007/s11464-011-0115-z

1
Asaad M. On minimal subgroups of finite groups. Glasgow Mathematical Journal, 2009, 51: 359-366

DOI

2
Berkovich Y. Groups of Prime Power Order, Vol 1. Berlin: Walter de Gruyter, 2008

3
Conway J H, Curtis R T, Norton S P, Parker R A, Wilson R A. Atlas of Finite Groups. Oxford: Oxford University Press, 1985

4
Doerk K. Minimal nicht überauflösbare, endliche Gruppen. Math Z, 1966, 91: 198-205

DOI

5
Itô N. Über die Frattini-Gruppe einer endlichen Gruppe. Proc Japan Acad, 1955, 31(6): 327-328

DOI

6
King O H. The subgroup structure of finite classical groups in terms of geometric configurations. In: Surveys in Combinatorics, London Math Soc Lecture Note, Ser 327. Cambridge: Cambridge University Press, 2005, 29-56

7
Li S. On minimal non-PE-groups. Journal of Pure and Applied Algebra, 1998, 132(2): 149-158

DOI

8
Robinson D J S. A Course in the Theory of Groups. New York-Heidelberg-Berlin: Springer-Verlag, 1980

9
Sastry N S N. On minimal nonPN-groups. Journal of Algebra, 1980, 65: 104-109

DOI

10
Schmidt O J. Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Mat Sbornik, 1924, 31: 366-372

11
Shaalan A, Ramadan M. On MNP-groups. Annales Univ Sci Budapest, 1993, 36: 23-30

12
Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel Journal of Mathematics, 1980, 35: 210-214

DOI

13
Suzuki M. On a class of doubly transitive groups. Annals of Mathematics, 1962, 75(2): 105-145

DOI

14
Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable. Bull Amer Math Soc, 1968, 74: 383-437

DOI

15
Zhang Q, Wang L, Guo P. On the structure of some finite groups. Southeast Asian Bulletin of Mathematics, 2006, 30: 995-1002

Options
Outlines

/