On minimal non-MSN-groups

Pengfei GUO, Xiuyun GUO

PDF(96 KB)
PDF(96 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (5) : 847-854. DOI: 10.1007/s11464-011-0115-z
RESEARCH ARTICLE
RESEARCH ARTICLE

On minimal non-MSN-groups

Author information +
History +

Abstract

A finite group G is called an MSN-group if all maximal subgroups of the Sylow subgroups of G are subnormal in G. In this paper, we determinate the structure of non-MSN-groups in which all of whose proper subgroups are MSN-groups.

Keywords

Subnormal group / maximal subgroup / MSN-group / minimal non-MSN-group / automorphism

Cite this article

Download citation ▾
Pengfei GUO, Xiuyun GUO. On minimal non-MSN-groups. Front Math Chin, 2011, 6(5): 847‒854 https://doi.org/10.1007/s11464-011-0115-z

References

[1]
Asaad M. On minimal subgroups of finite groups. Glasgow Mathematical Journal, 2009, 51: 359-366
CrossRef Google scholar
[2]
Berkovich Y. Groups of Prime Power Order, Vol 1. Berlin: Walter de Gruyter, 2008
[3]
Conway J H, Curtis R T, Norton S P, Parker R A, Wilson R A. Atlas of Finite Groups. Oxford: Oxford University Press, 1985
[4]
Doerk K. Minimal nicht überauflösbare, endliche Gruppen. Math Z, 1966, 91: 198-205
CrossRef Google scholar
[5]
Itô N. Über die Frattini-Gruppe einer endlichen Gruppe. Proc Japan Acad, 1955, 31(6): 327-328
CrossRef Google scholar
[6]
King O H. The subgroup structure of finite classical groups in terms of geometric configurations. In: Surveys in Combinatorics, London Math Soc Lecture Note, Ser 327. Cambridge: Cambridge University Press, 2005, 29-56
[7]
Li S. On minimal non-PE-groups. Journal of Pure and Applied Algebra, 1998, 132(2): 149-158
CrossRef Google scholar
[8]
Robinson D J S. A Course in the Theory of Groups. New York-Heidelberg-Berlin: Springer-Verlag, 1980
[9]
Sastry N S N. On minimal nonPN-groups. Journal of Algebra, 1980, 65: 104-109
CrossRef Google scholar
[10]
Schmidt O J. Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Mat Sbornik, 1924, 31: 366-372
[11]
Shaalan A, Ramadan M. On MNP-groups. Annales Univ Sci Budapest, 1993, 36: 23-30
[12]
Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel Journal of Mathematics, 1980, 35: 210-214
CrossRef Google scholar
[13]
Suzuki M. On a class of doubly transitive groups. Annals of Mathematics, 1962, 75(2): 105-145
CrossRef Google scholar
[14]
Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable. Bull Amer Math Soc, 1968, 74: 383-437
CrossRef Google scholar
[15]
Zhang Q, Wang L, Guo P. On the structure of some finite groups. Southeast Asian Bulletin of Mathematics, 2006, 30: 995-1002

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(96 KB)

Accesses

Citations

Detail

Sections
Recommended

/