Frontiers of Mathematics in China >
Second cohomology group of extended W-algebras
Received date: 04 May 2010
Accepted date: 23 Dec 2010
Published date: 01 Aug 2011
Copyright
Let be a field of characteristic 0, and let G be an additive subgroup of . We define a class of infinite-dimensional Lie algebras W with an -basis , which are very closely related to W-algebras. In this paper, the second cohomology group of W is determined.
Key words: W-algebra; second cohomology group; central extension
Wei WANG , Yongping WU , Chunguang XIA . Second cohomology group of extended W-algebras[J]. Frontiers of Mathematics in China, 2011 , 6(4) : 745 -758 . DOI: 10.1007/s11464-011-0101-5
1 |
Djokovic D, Zhao K. Derivations, isomorphisms and second cohomology of generalized Witt algebras. Tran Amer Math Soc, 1998, 350: 643-664
|
2 |
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Alg, 1988, 118: 33-45
|
3 |
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. New York: Academic Press, 1988
|
4 |
Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra
|
5 |
Kac V G. Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1990
|
6 |
Li J, Su Y, Zhu L. 2-Cocycles of original deformative Schrodinger-Virasoro algebras. Sci China, Ser A-Math, 2008, 38: 841-850
|
7 |
Song G, Su Y. Derivations and 2-cocycles of contact Lie algebras related to locally-finite derivations. Comm Alg, 2004, 32: 4613-4631
|
8 |
Song G, Su Y. 2-cocycles on the Lie superalgebras of Weyl type. Comm Alg, 2005, 33: 2991-3007
|
9 |
Su Y. Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023
|
10 |
Su Y. Simple modules over the high rank Virasoro algebras. Comm Alg, 2001, 29: 2067-2080
|
11 |
Su Y. 2-Cocycles on the Lie algebras of generalized differential operators. Comm Alg, 2002, 30: 763-782
|
12 |
Su Y. Structure of Lie superalgebras of block type related to locally finite derivations. Comm Alg, 2003, 31: 1725-1751
|
13 |
Su Y, Zhao K. Second cohomology group of generalized Cartan type Witt Lie algebras and central extensions. Comm Alg, 2002, 30: 3285-3309
|
14 |
Zamolodchikov A B. Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor Math Phys, 1986, 65: 1205-1213
|
15 |
Zhang W, Dong C. W-Algebra W(2, 2) and the Vertex operator algebra
|
/
〈 | 〉 |