RESEARCH ARTICLE

Second cohomology group of extended W-algebras

  • Wei WANG , 1,2 ,
  • Yongping WU 3 ,
  • Chunguang XIA 1
Expand
  • 1. Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei 230026, China
  • 2. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, China
  • 3. School of Mathematics and Computer Science, Longyan University, Longyan 364000, China

Received date: 04 May 2010

Accepted date: 23 Dec 2010

Published date: 01 Aug 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let F be a field of characteristic 0, and let G be an additive subgroup of F. We define a class of infinite-dimensional Lie algebras W with an F-basis {Lμ,Vμ,Wμ|μG}, which are very closely related to W-algebras. In this paper, the second cohomology group of W is determined.

Cite this article

Wei WANG , Yongping WU , Chunguang XIA . Second cohomology group of extended W-algebras[J]. Frontiers of Mathematics in China, 2011 , 6(4) : 745 -758 . DOI: 10.1007/s11464-011-0101-5

1
Djokovic D, Zhao K. Derivations, isomorphisms and second cohomology of generalized Witt algebras. Tran Amer Math Soc, 1998, 350: 643-664

DOI

2
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Alg, 1988, 118: 33-45

DOI

3
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. New York: Academic Press, 1988

4
Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra sv ˜. Alg Colloq, 2009, 4: 549-566

5
Kac V G. Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1990

DOI

6
Li J, Su Y, Zhu L. 2-Cocycles of original deformative Schrodinger-Virasoro algebras. Sci China, Ser A-Math, 2008, 38: 841-850

7
Song G, Su Y. Derivations and 2-cocycles of contact Lie algebras related to locally-finite derivations. Comm Alg, 2004, 32: 4613-4631

DOI

8
Song G, Su Y. 2-cocycles on the Lie superalgebras of Weyl type. Comm Alg, 2005, 33: 2991-3007

DOI

9
Su Y. Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023

DOI

10
Su Y. Simple modules over the high rank Virasoro algebras. Comm Alg, 2001, 29: 2067-2080

DOI

11
Su Y. 2-Cocycles on the Lie algebras of generalized differential operators. Comm Alg, 2002, 30: 763-782

DOI

12
Su Y. Structure of Lie superalgebras of block type related to locally finite derivations. Comm Alg, 2003, 31: 1725-1751

DOI

13
Su Y, Zhao K. Second cohomology group of generalized Cartan type Witt Lie algebras and central extensions. Comm Alg, 2002, 30: 3285-3309

DOI

14
Zamolodchikov A B. Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor Math Phys, 1986, 65: 1205-1213

DOI

15
Zhang W, Dong C. W-Algebra W(2, 2) and the Vertex operator algebra L(12,0)⊗L(12,0). Comm Math Phys, 2009, 258: 991-1004

DOI

Options
Outlines

/