Second cohomology group of extended W-algebras

Wei WANG, Yongping WU, Chunguang XIA

PDF(173 KB)
PDF(173 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 745-758. DOI: 10.1007/s11464-011-0101-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Second cohomology group of extended W-algebras

Author information +
History +

Abstract

Let F be a field of characteristic 0, and let G be an additive subgroup of F. We define a class of infinite-dimensional Lie algebras W with an F-basis {Lμ,Vμ,Wμ|μG}, which are very closely related to W-algebras. In this paper, the second cohomology group of W is determined.

Keywords

W-algebra / second cohomology group / central extension

Cite this article

Download citation ▾
Wei WANG, Yongping WU, Chunguang XIA. Second cohomology group of extended W-algebras. Front Math Chin, 2011, 6(4): 745‒758 https://doi.org/10.1007/s11464-011-0101-5

References

[1]
Djokovic D, Zhao K. Derivations, isomorphisms and second cohomology of generalized Witt algebras. Tran Amer Math Soc, 1998, 350: 643-664
CrossRef Google scholar
[2]
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Alg, 1988, 118: 33-45
CrossRef Google scholar
[3]
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. New York: Academic Press, 1988
[4]
Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra sv ˜. Alg Colloq, 2009, 4: 549-566
[5]
Kac V G. Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1990
CrossRef Google scholar
[6]
Li J, Su Y, Zhu L. 2-Cocycles of original deformative Schrodinger-Virasoro algebras. Sci China, Ser A-Math, 2008, 38: 841-850
[7]
Song G, Su Y. Derivations and 2-cocycles of contact Lie algebras related to locally-finite derivations. Comm Alg, 2004, 32: 4613-4631
CrossRef Google scholar
[8]
Song G, Su Y. 2-cocycles on the Lie superalgebras of Weyl type. Comm Alg, 2005, 33: 2991-3007
CrossRef Google scholar
[9]
Su Y. Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023
CrossRef Google scholar
[10]
Su Y. Simple modules over the high rank Virasoro algebras. Comm Alg, 2001, 29: 2067-2080
CrossRef Google scholar
[11]
Su Y. 2-Cocycles on the Lie algebras of generalized differential operators. Comm Alg, 2002, 30: 763-782
CrossRef Google scholar
[12]
Su Y. Structure of Lie superalgebras of block type related to locally finite derivations. Comm Alg, 2003, 31: 1725-1751
CrossRef Google scholar
[13]
Su Y, Zhao K. Second cohomology group of generalized Cartan type Witt Lie algebras and central extensions. Comm Alg, 2002, 30: 3285-3309
CrossRef Google scholar
[14]
Zamolodchikov A B. Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor Math Phys, 1986, 65: 1205-1213
CrossRef Google scholar
[15]
Zhang W, Dong C. W-Algebra W(2, 2) and the Vertex operator algebra L(12,0)⊗L(12,0). Comm Math Phys, 2009, 258: 991-1004
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(173 KB)

Accesses

Citations

Detail

Sections
Recommended

/