Second cohomology group of extended W-algebras

Wei Wang, Yongping Wu, Chunguang Xia

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 745-758.

PDF(173 KB)
Front. Math. China All Journals
PDF(173 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 745-758. DOI: 10.1007/s11464-011-0101-5
Research Article
RESEARCH ARTICLE

Second cohomology group of extended W-algebras

Author information +
History +

Abstract

Let F be a field of characteristic 0, and let G be an additive subgroup of F. We define a class of infinite-dimensional Lie algebras [inline-graphic not available: see fulltext] with an F-basis {L µ, V µ, W µ | µ ∈ G}, which are very closely related to W-algebras. In this paper, the second cohomology group of [inline-graphic not available: see fulltext] is determined.

Keywords

W-algebra / second cohomology group / central extension

Cite this article

Download citation ▾
Wei Wang, Yongping Wu, Chunguang Xia. Second cohomology group of extended W-algebras. Front. Math. China, 2011, 6(4): 745‒758 https://doi.org/10.1007/s11464-011-0101-5
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Djokovic D., Zhao K. Derivations, isomorphisms and second cohomology of generalized Witt algebras. Tran Amer Math Soc, 1998, 350, 643-664
CrossRef Google scholar
[2.]
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Alg, 1988, 118, 33-45
CrossRef Google scholar
[3.]
Frenkel I., Lepowsky J., Meurman A. Vertex Operator Algebras and the Monster, 1988, New York: Academic Press.
[4.]
Gao S., Jiang C., Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra sv~. Alg Colloq, 2009, 4, 549-566
[5.]
Kac V. G. Infinite Dimensional Lie Algebras, 1990, Cambridge: Cambridge University Press
CrossRef Google scholar
[6.]
Li J., Su Y., Zhu L. 2-Cocycles of original deformative Schrodinger-Virasoro algebras. Sci China, Ser A-Math, 2008, 38, 841-850
[7.]
Song G., Su Y. Derivations and 2-cocycles of contact Lie algebras related to locally-finite derivations. Comm Alg, 2004, 32, 4613-4631
CrossRef Google scholar
[8.]
Song G., Su Y. 2-cocycles on the Lie superalgebras of Weyl type. Comm Alg, 2005, 33, 2991-3007
CrossRef Google scholar
[9.]
Su Y. Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35, 2013-2023
CrossRef Google scholar
[10.]
Su Y. Simple modules over the high rank Virasoro algebras. Comm Alg, 2001, 29, 2067-2080
CrossRef Google scholar
[11.]
Su Y. 2-Cocycles on the Lie algebras of generalized differential operators. Comm Alg, 2002, 30, 763-782
CrossRef Google scholar
[12.]
Su Y. Structure of Lie superalgebras of block type related to locally finite derivations. Comm Alg, 2003, 31, 1725-1751
CrossRef Google scholar
[13.]
Su Y., Zhao K. Second cohomology group of generalized Cartan type Witt Lie algebras and central extensions. Comm Alg, 2002, 30, 3285-3309
CrossRef Google scholar
[14.]
Zamolodchikov A. B. Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor Math Phys, 1986, 65, 1205-1213
CrossRef Google scholar
[15.]
Zhang W., Dong C. W-Algebra W(2, 2) and the Vertex operator algebra L(12,0)L(12,0). Comm Math Phys, 2009, 258, 991-1004
CrossRef Google scholar
AI Summary AI Mindmap
PDF(173 KB)

651

Accesses

0

Citations

Detail

Sections
Recommended

/