Frontiers of Mathematics in China >
Whittaker modules for a Lie algebra of Block type
Received date: 06 Sep 2010
Accepted date: 16 Mar 2011
Published date: 01 Aug 2011
Copyright
In this paper, we study Whittaker modules for a Lie algebra of Block type. We define Whittaker modules and under some conditions, obtain a bijective correspondence between the set of isomorphism classes of Whittaker modules over this algebra and the set of ideals of a polynomial ring, parallel to a result from the classical setting and the case of the Virasoro algebra.
Key words: Whittaker module; Whittaker vector
Bin WANG , Xinyun ZHU . Whittaker modules for a Lie algebra of Block type[J]. Frontiers of Mathematics in China, 2011 , 6(4) : 731 -744 . DOI: 10.1007/s11464-011-0121-1
1 |
Benkart G, Ondrus M. Whittaker modules for Generalized Weyl algebras. Represent Theory, 2009, 13: 141-164
|
2 |
Christodoulopoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320: 2871-2890
|
3 |
Dokovic D, Zhao K. Derivations, isomorphisms and cohomology of generalized Block algebras. Algebra Colloq, 1996, 3: 245-272
|
4 |
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48: 101-184
|
5 |
Lin W, Tan S. Nonzero level Harish-Chandra modules over the Virasoro-like algebra. J Pure Appl Algebra, 2006, 204: 90-105
|
6 |
Ondrus M. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192-213
|
7 |
Ondrus M, Wiesenr E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8: 363-377
|
8 |
Sevostyanov A. Quantum deformation of Whittaker modules and Toda lattice. Duke Math J, 2000, 204: 211-238
|
9 |
Su Y. Quasifinite representations of a Lie algebra of Block type. J Algebra, 2004, 276: 117-128
|
10 |
Su Y. Quasifinite representations of a family of Lie algebras of Block type. J Pure Appl Algebra, 2004, 192: 293-305
|
11 |
Wang B. Whittaker Modules for graded Lie algebras. Algebras and the Representation Theory (to appear); arXiv: 0902.3801
|
12 |
Wu Y, Su Y. Highest weight representations of a Lie algebra of Block type. Sci China, Ser A, 2007, 50: 1267-1279
|
13 |
Xu X. Generalizations of Block algebras. Manuscripta Math, 1999, 100: 489-518
|
14 |
Xu X. Quadratic conformal superalgebras. J Algebra, 2000, 231: 1-38
|
15 |
Yue X, Su Y. Classification of
|
16 |
Zhang H, Zhao K. Representations of the Virasoro-like Lie algebra and its q-analog. Commun Algebra, 1996, 24: 4361-4372
|
17 |
Zhang X, Tan S, Lian H. Whittaker modules for the Schrödinger-Witt algebra. J Math Phys, 2010, 51: 083524
|
18 |
Zhu L, Meng D. Structure of degenerate Block algebras. Algebra Colloq, 2003, 10: 53-62
|
/
〈 | 〉 |