Whittaker modules for a Lie algebra of Block type

Bin Wang , Xinyun Zhu

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 731 -744.

PDF (209KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 731 -744. DOI: 10.1007/s11464-011-0121-1
Research Article
RESEARCH ARTICLE

Whittaker modules for a Lie algebra of Block type

Author information +
History +
PDF (209KB)

Abstract

In this paper, we study Whittaker modules for a Lie algebra of Block type. We define Whittaker modules and under some conditions, obtain a bijective correspondence between the set of isomorphism classes of Whittaker modules over this algebra and the set of ideals of a polynomial ring, parallel to a result from the classical setting and the case of the Virasoro algebra.

Keywords

Whittaker module / Whittaker vector

Cite this article

Download citation ▾
Bin Wang, Xinyun Zhu. Whittaker modules for a Lie algebra of Block type. Front. Math. China, 2011, 6(4): 731-744 DOI:10.1007/s11464-011-0121-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benkart G., Ondrus M. Whittaker modules for Generalized Weyl algebras. Represent Theory, 2009, 13, 141-164

[2]

Christodoulopoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320, 2871-2890

[3]

Dokovic D., Zhao K. Derivations, isomorphisms and cohomology of generalized Block algebras. Algebra Colloq, 1996, 3, 245-272

[4]

Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48, 101-184

[5]

Lin W., Tan S. Nonzero level Harish-Chandra modules over the Virasoro-like algebra. J Pure Appl Algebra, 2006, 204, 90-105

[6]

Ondrus M. Whittaker modules for U q(sl2). J Algebra, 2005, 289, 192-213

[7]

Ondrus M., Wiesenr E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8, 363-377

[8]

Sevostyanov A. Quantum deformation of Whittaker modules and Toda lattice. Duke Math J, 2000, 204, 211-238

[9]

Su Y. Quasifinite representations of a Lie algebra of Block type. J Algebra, 2004, 276, 117-128

[10]

Su Y. Quasifinite representations of a family of Lie algebras of Block type. J Pure Appl Algebra, 2004, 192, 293-305

[11]

Wang B. Whittaker Modules for graded Lie algebras. Algebras and the Representation Theory (to appear); arXiv: 0902.3801

[12]

Wu Y., Su Y. Highest weight representations of a Lie algebra of Block type. Sci China, Ser A, 2007, 50, 1267-1279

[13]

Xu X. Generalizations of Block algebras. Manuscripta Math, 1999, 100, 489-518

[14]

Xu X. Quadratic conformal superalgebras. J Algebra, 2000, 231, 1-38

[15]

Yue X, Su Y. Classification of ℤ2-graded modules of the intermediate series over a Lie algebra of Block type. arXiv.math/0611942v2

[16]

Zhang H., Zhao K. Representations of the Virasoro-like Lie algebra and its q-analog. Commun Algebra, 1996, 24, 4361-4372

[17]

Zhang X., Tan S., Lian H. Whittaker modules for the Schrödinger-Witt algebra. J Math Phys, 2010, 51, 083524

[18]

Zhu L., Meng D. Structure of degenerate Block algebras. Algebra Colloq, 2003, 10, 53-62

AI Summary AI Mindmap
PDF (209KB)

962

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/