Whittaker modules for a Lie algebra of Block type

Bin WANG, Xinyun ZHU

PDF(209 KB)
PDF(209 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 731-744. DOI: 10.1007/s11464-011-0121-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Whittaker modules for a Lie algebra of Block type

Author information +
History +

Abstract

In this paper, we study Whittaker modules for a Lie algebra of Block type. We define Whittaker modules and under some conditions, obtain a bijective correspondence between the set of isomorphism classes of Whittaker modules over this algebra and the set of ideals of a polynomial ring, parallel to a result from the classical setting and the case of the Virasoro algebra.

Keywords

Whittaker module / Whittaker vector

Cite this article

Download citation ▾
Bin WANG, Xinyun ZHU. Whittaker modules for a Lie algebra of Block type. Front Math Chin, 2011, 6(4): 731‒744 https://doi.org/10.1007/s11464-011-0121-1

References

[1]
Benkart G, Ondrus M. Whittaker modules for Generalized Weyl algebras. Represent Theory, 2009, 13: 141-164
CrossRef Google scholar
[2]
Christodoulopoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320: 2871-2890
CrossRef Google scholar
[3]
Dokovic D, Zhao K. Derivations, isomorphisms and cohomology of generalized Block algebras. Algebra Colloq, 1996, 3: 245-272
[4]
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48: 101-184
CrossRef Google scholar
[5]
Lin W, Tan S. Nonzero level Harish-Chandra modules over the Virasoro-like algebra. J Pure Appl Algebra, 2006, 204: 90-105
CrossRef Google scholar
[6]
Ondrus M. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192-213
CrossRef Google scholar
[7]
Ondrus M, Wiesenr E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8: 363-377
CrossRef Google scholar
[8]
Sevostyanov A. Quantum deformation of Whittaker modules and Toda lattice. Duke Math J, 2000, 204: 211-238
CrossRef Google scholar
[9]
Su Y. Quasifinite representations of a Lie algebra of Block type. J Algebra, 2004, 276: 117-128
CrossRef Google scholar
[10]
Su Y. Quasifinite representations of a family of Lie algebras of Block type. J Pure Appl Algebra, 2004, 192: 293-305
CrossRef Google scholar
[11]
Wang B. Whittaker Modules for graded Lie algebras. Algebras and the Representation Theory (to appear); arXiv: 0902.3801
[12]
Wu Y, Su Y. Highest weight representations of a Lie algebra of Block type. Sci China, Ser A, 2007, 50: 1267-1279
CrossRef Google scholar
[13]
Xu X. Generalizations of Block algebras. Manuscripta Math, 1999, 100: 489-518
CrossRef Google scholar
[14]
Xu X. Quadratic conformal superalgebras. J Algebra, 2000, 231: 1-38
CrossRef Google scholar
[15]
Yue X, Su Y. Classification of ℤ2-graded modules of the intermediate series over a Lie algebra of Block type. arXiv.math/0611942v2
[16]
Zhang H, Zhao K. Representations of the Virasoro-like Lie algebra and its q-analog. Commun Algebra, 1996, 24: 4361-4372
CrossRef Google scholar
[17]
Zhang X, Tan S, Lian H. Whittaker modules for the Schrödinger-Witt algebra. J Math Phys, 2010, 51: 083524
CrossRef Google scholar
[18]
Zhu L, Meng D. Structure of degenerate Block algebras. Algebra Colloq, 2003, 10: 53-62
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(209 KB)

Accesses

Citations

Detail

Sections
Recommended

/