RESEARCH ARTICLE

Schrödinger-Virasoro type Lie bialgebra: a twisted case

  • Huanxia FA 1 ,
  • Yanjie LI 1 ,
  • Junbo LI , 1,2
Expand
  • 1. School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China
  • 2. Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received date: 24 Dec 2009

Accepted date: 18 Jan 2011

Published date: 01 Aug 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra L. All Lie bialgebra structures on L are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to LL and we develop one method to search them.

Cite this article

Huanxia FA , Yanjie LI , Junbo LI . Schrödinger-Virasoro type Lie bialgebra: a twisted case[J]. Frontiers of Mathematics in China, 2011 , 6(4) : 641 -657 . DOI: 10.1007/s11464-011-0105-1

1
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl, 1983, 28(3): 667-671

2
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley. Providence: Amer Math Soc, 1987, 798-820

3
Fa H, Ding L, Li J. Classification of modules of the intermediate series over a Schrödinger-Virasoro type. Journal of University of Science and Technology of China, 2010, 40(6): 590-603

4
Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra. Alg Colloq, 2009, 16(4): 549-566

5
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra, 2004, 280: 145-161

DOI

6
Han J, Li J, Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50(8): 083504

DOI

7
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023-1029

DOI

8
Hu N, Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra, 2007, 312: 902-929

DOI

9
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512

DOI

10
Li J, Su Y. 2-cocycles of deformative Schrödinger-Virasoro algebras. arXiv: 801.2210v1

11
Li J, Su Y, Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B, 2008, 29: 487-500

12
Michaelis W. Lie coalgebras. Adv Math, 1980, 38: 1-54

DOI

13
Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math, 1985, 57: 93-162

DOI

14
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107: 365-392

DOI

15
Ng S, Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg, 2000, 151: 67-88

DOI

16
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7: 1477-1529

17
Song G, Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A, 2006, 49: 533-544

DOI

18
Song G, Su Y, Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl, 2008, 428: 2888-2899

DOI

19
Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg, 1993, 87: 301-312

DOI

20
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 332: 1379-1394

DOI

21
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra. Nuclear Phys B, 2009, 823(3): 320-371

DOI

22
Wang W, Li J. Derivations and automorphisms of twisted deformative Schrödinger-Virasoro Lie algebras. arXiv: 1005.5506v1

23
Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser), 2006, 22: 1915-1922

DOI

24
Wu Y, Song G, Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35(6): 1992-2007

DOI

25
Xin B, Song G, Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A, 2007, 50: 1267-1279

DOI

26
Yang H, Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals, 2009, 40(2): 661-671

DOI

27
Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36(4): 1537-1549

DOI

28
Zhang X, Tan S, Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schrödinger-Virasoro algebra. J Math Phys, 2010, 51(8): 083524

DOI

Options
Outlines

/