Frontiers of Mathematics in China >
Schrödinger-Virasoro type Lie bialgebra: a twisted case
Received date: 24 Dec 2009
Accepted date: 18 Jan 2011
Published date: 01 Aug 2011
Copyright
In this paper, we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra . All Lie bialgebra structures on are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to and we develop one method to search them.
Huanxia FA , Yanjie LI , Junbo LI . Schrödinger-Virasoro type Lie bialgebra: a twisted case[J]. Frontiers of Mathematics in China, 2011 , 6(4) : 641 -657 . DOI: 10.1007/s11464-011-0105-1
1 |
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl, 1983, 28(3): 667-671
|
2 |
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley. Providence: Amer Math Soc, 1987, 798-820
|
3 |
Fa H, Ding L, Li J. Classification of modules of the intermediate series over a Schrödinger-Virasoro type. Journal of University of Science and Technology of China, 2010, 40(6): 590-603
|
4 |
Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra. Alg Colloq, 2009, 16(4): 549-566
|
5 |
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra, 2004, 280: 145-161
|
6 |
Han J, Li J, Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50(8): 083504
|
7 |
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023-1029
|
8 |
Hu N, Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra, 2007, 312: 902-929
|
9 |
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512
|
10 |
Li J, Su Y. 2-cocycles of deformative Schrödinger-Virasoro algebras. arXiv: 801.2210v1
|
11 |
Li J, Su Y, Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B, 2008, 29: 487-500
|
12 |
Michaelis W. Lie coalgebras. Adv Math, 1980, 38: 1-54
|
13 |
Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math, 1985, 57: 93-162
|
14 |
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107: 365-392
|
15 |
Ng S, Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg, 2000, 151: 67-88
|
16 |
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7: 1477-1529
|
17 |
Song G, Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A, 2006, 49: 533-544
|
18 |
Song G, Su Y, Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl, 2008, 428: 2888-2899
|
19 |
Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg, 1993, 87: 301-312
|
20 |
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 332: 1379-1394
|
21 |
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra. Nuclear Phys B, 2009, 823(3): 320-371
|
22 |
Wang W, Li J. Derivations and automorphisms of twisted deformative Schrödinger-Virasoro Lie algebras. arXiv: 1005.5506v1
|
23 |
Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser), 2006, 22: 1915-1922
|
24 |
Wu Y, Song G, Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35(6): 1992-2007
|
25 |
Xin B, Song G, Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A, 2007, 50: 1267-1279
|
26 |
Yang H, Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals, 2009, 40(2): 661-671
|
27 |
Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36(4): 1537-1549
|
28 |
Zhang X, Tan S, Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schrödinger-Virasoro algebra. J Math Phys, 2010, 51(8): 083524
|
/
〈 | 〉 |