Schr?dinger-Virasoro type Lie bialgebra: a twisted case

Huanxia FA, Yanjie LI, Junbo LI

PDF(200 KB)
PDF(200 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 641-657. DOI: 10.1007/s11464-011-0105-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Schr?dinger-Virasoro type Lie bialgebra: a twisted case

Author information +
History +

Abstract

In this paper, we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra L. All Lie bialgebra structures on L are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to LL and we develop one method to search them.

Keywords

Lie bialgebra / Yang-Baxter equation / twisted Schrödinger-Virasoro algebra

Cite this article

Download citation ▾
Huanxia FA, Yanjie LI, Junbo LI. Schrödinger-Virasoro type Lie bialgebra: a twisted case. Front Math Chin, 2011, 6(4): 641‒657 https://doi.org/10.1007/s11464-011-0105-1

References

[1]
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl, 1983, 28(3): 667-671
[2]
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley. Providence: Amer Math Soc, 1987, 798-820
[3]
Fa H, Ding L, Li J. Classification of modules of the intermediate series over a Schrödinger-Virasoro type. Journal of University of Science and Technology of China, 2010, 40(6): 590-603
[4]
Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra. Alg Colloq, 2009, 16(4): 549-566
[5]
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra, 2004, 280: 145-161
CrossRef Google scholar
[6]
Han J, Li J, Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50(8): 083504
CrossRef Google scholar
[7]
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023-1029
CrossRef Google scholar
[8]
Hu N, Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra, 2007, 312: 902-929
CrossRef Google scholar
[9]
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512
CrossRef Google scholar
[10]
Li J, Su Y. 2-cocycles of deformative Schrödinger-Virasoro algebras. arXiv: 801.2210v1
[11]
Li J, Su Y, Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B, 2008, 29: 487-500
[12]
Michaelis W. Lie coalgebras. Adv Math, 1980, 38: 1-54
CrossRef Google scholar
[13]
Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math, 1985, 57: 93-162
CrossRef Google scholar
[14]
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107: 365-392
CrossRef Google scholar
[15]
Ng S, Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg, 2000, 151: 67-88
CrossRef Google scholar
[16]
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7: 1477-1529
[17]
Song G, Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A, 2006, 49: 533-544
CrossRef Google scholar
[18]
Song G, Su Y, Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl, 2008, 428: 2888-2899
CrossRef Google scholar
[19]
Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg, 1993, 87: 301-312
CrossRef Google scholar
[20]
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 332: 1379-1394
CrossRef Google scholar
[21]
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra. Nuclear Phys B, 2009, 823(3): 320-371
CrossRef Google scholar
[22]
Wang W, Li J. Derivations and automorphisms of twisted deformative Schrödinger-Virasoro Lie algebras. arXiv: 1005.5506v1
[23]
Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser), 2006, 22: 1915-1922
CrossRef Google scholar
[24]
Wu Y, Song G, Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35(6): 1992-2007
CrossRef Google scholar
[25]
Xin B, Song G, Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A, 2007, 50: 1267-1279
CrossRef Google scholar
[26]
Yang H, Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals, 2009, 40(2): 661-671
CrossRef Google scholar
[27]
Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36(4): 1537-1549
CrossRef Google scholar
[28]
Zhang X, Tan S, Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schrödinger-Virasoro algebra. J Math Phys, 2010, 51(8): 083524
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(200 KB)

Accesses

Citations

Detail

Sections
Recommended

/