Schr?dinger-Virasoro type Lie bialgebra: a twisted case
Huanxia FA, Yanjie LI, Junbo LI
Schr?dinger-Virasoro type Lie bialgebra: a twisted case
In this paper, we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra . All Lie bialgebra structures on are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to and we develop one method to search them.
Lie bialgebra / Yang-Baxter equation / twisted Schrödinger-Virasoro algebra
[1] |
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl, 1983, 28(3): 667-671
|
[2] |
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley. Providence: Amer Math Soc, 1987, 798-820
|
[3] |
Fa H, Ding L, Li J. Classification of modules of the intermediate series over a Schrödinger-Virasoro type. Journal of University of Science and Technology of China, 2010, 40(6): 590-603
|
[4] |
Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra. Alg Colloq, 2009, 16(4): 549-566
|
[5] |
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra, 2004, 280: 145-161
CrossRef
Google scholar
|
[6] |
Han J, Li J, Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50(8): 083504
CrossRef
Google scholar
|
[7] |
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023-1029
CrossRef
Google scholar
|
[8] |
Hu N, Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra, 2007, 312: 902-929
CrossRef
Google scholar
|
[9] |
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512
CrossRef
Google scholar
|
[10] |
Li J, Su Y. 2-cocycles of deformative Schrödinger-Virasoro algebras. arXiv: 801.2210v1
|
[11] |
Li J, Su Y, Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B, 2008, 29: 487-500
|
[12] |
Michaelis W. Lie coalgebras. Adv Math, 1980, 38: 1-54
CrossRef
Google scholar
|
[13] |
Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math, 1985, 57: 93-162
CrossRef
Google scholar
|
[14] |
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107: 365-392
CrossRef
Google scholar
|
[15] |
Ng S, Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg, 2000, 151: 67-88
CrossRef
Google scholar
|
[16] |
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7: 1477-1529
|
[17] |
Song G, Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A, 2006, 49: 533-544
CrossRef
Google scholar
|
[18] |
Song G, Su Y, Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl, 2008, 428: 2888-2899
CrossRef
Google scholar
|
[19] |
Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg, 1993, 87: 301-312
CrossRef
Google scholar
|
[20] |
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 332: 1379-1394
CrossRef
Google scholar
|
[21] |
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra. Nuclear Phys B, 2009, 823(3): 320-371
CrossRef
Google scholar
|
[22] |
Wang W, Li J. Derivations and automorphisms of twisted deformative Schrödinger-Virasoro Lie algebras. arXiv: 1005.5506v1
|
[23] |
Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser), 2006, 22: 1915-1922
CrossRef
Google scholar
|
[24] |
Wu Y, Song G, Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35(6): 1992-2007
CrossRef
Google scholar
|
[25] |
Xin B, Song G, Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A, 2007, 50: 1267-1279
CrossRef
Google scholar
|
[26] |
Yang H, Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals, 2009, 40(2): 661-671
CrossRef
Google scholar
|
[27] |
Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36(4): 1537-1549
CrossRef
Google scholar
|
[28] |
Zhang X, Tan S, Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schrödinger-Virasoro algebra. J Math Phys, 2010, 51(8): 083524
CrossRef
Google scholar
|
/
〈 | 〉 |