
Schrödinger-Virasoro type Lie bialgebra: a twisted case
Huanxia Fa, Yanjie Li, Junbo Li
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 641-657.
Schrödinger-Virasoro type Lie bialgebra: a twisted case
In this paper, we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra $\mathfrak{L}$. All Lie bialgebra structures on $\mathfrak{L}$ are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to $\mathfrak{L} \otimes \mathfrak{L}$ and we develop one method to search them.
Lie bialgebra / Yang-Baxter equation / twisted Schrödinger-Virasoro algebra
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
Li J, Su Y. 2-cocycles of deformative Schrödinger-Virasoro algebras. arXiv: 0801.2210v1
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
Wang W, Li J. Derivations and automorphisms of twisted deformative Schrödinger-Virasoro Lie algebras. arXiv: 1005.5506v1
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
/
〈 |
|
〉 |