Schrödinger-Virasoro type Lie bialgebra: a twisted case

Huanxia Fa , Yanjie Li , Junbo Li

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 641 -657.

PDF (200KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 641 -657. DOI: 10.1007/s11464-011-0105-1
Research Article
RESEARCH ARTICLE

Schrödinger-Virasoro type Lie bialgebra: a twisted case

Author information +
History +
PDF (200KB)

Abstract

In this paper, we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra $\mathfrak{L}$. All Lie bialgebra structures on $\mathfrak{L}$ are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to $\mathfrak{L} \otimes \mathfrak{L}$ and we develop one method to search them.

Keywords

Lie bialgebra / Yang-Baxter equation / twisted Schrödinger-Virasoro algebra

Cite this article

Download citation ▾
Huanxia Fa, Yanjie Li, Junbo Li. Schrödinger-Virasoro type Lie bialgebra: a twisted case. Front. Math. China, 2011, 6(4): 641-657 DOI:10.1007/s11464-011-0105-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Drinfel’d V. G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl, 1983, 28 3 667-671

[2]

Drinfel’d V. G. Quantum groups. Proceeding of the International Congress of Mathematicians, Berkeley, 1987, Providence: Amer Math Soc 798-820

[3]

Fa H., Ding L., Li J. Classification of modules of the intermediate series over a Schrödinger-Virasoro type. Journal of University of Science and Technology of China, 2010, 40 6 590-603

[4]

Gao S., Jiang C., Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra. Alg Colloq, 2009, 16 4 549-566

[5]

Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra, 2004, 280, 145-161

[6]

Han J., Li J., Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50 8 083504

[7]

Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75, 1023-1029

[8]

Hu N., Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra, 2007, 312, 902-929

[9]

Li J., Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49, 053512

[10]

Li J, Su Y. 2-cocycles of deformative Schrödinger-Virasoro algebras. arXiv: 0801.2210v1

[11]

Li J., Su Y., Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B, 2008, 29, 487-500

[12]

Michaelis W. Lie coalgebras. Adv Math, 1980, 38, 1-54

[13]

Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math, 1985, 57, 93-162

[14]

Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107, 365-392

[15]

Ng S., Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg, 2000, 151, 67-88

[16]

Roger C., Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7, 1477-1529

[17]

Song G., Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A, 2006, 49, 533-544

[18]

Song G., Su Y., Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl, 2008, 428, 2888-2899

[19]

Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg, 1993, 87, 301-312

[20]

Tan S., Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 332, 1379-1394

[21]

Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra. Nuclear Phys B, 2009, 823 3 320-371

[22]

Wang W, Li J. Derivations and automorphisms of twisted deformative Schrödinger-Virasoro Lie algebras. arXiv: 1005.5506v1

[23]

Wu Y., Song G., Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser), 2006, 22, 1915-1922

[24]

Wu Y., Song G., Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35 6 1992-2007

[25]

Xin B., Song G., Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A, 2007, 50, 1267-1279

[26]

Yang H., Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals, 2009, 40 2 661-671

[27]

Yue X., Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36 4 1537-1549

[28]

Zhang X., Tan S., Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schrödinger-Virasoro algebra. J Math Phys, 2010, 51 8 083524

AI Summary AI Mindmap
PDF (200KB)

942

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/