Schrödinger-Virasoro type Lie bialgebra: a twisted case

Huanxia Fa, Yanjie Li, Junbo Li

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 641-657.

PDF(200 KB)
PDF(200 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 641-657. DOI: 10.1007/s11464-011-0105-1
Research Article
RESEARCH ARTICLE

Schrödinger-Virasoro type Lie bialgebra: a twisted case

Author information +
History +

Abstract

In this paper, we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra $\mathfrak{L}$. All Lie bialgebra structures on $\mathfrak{L}$ are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to $\mathfrak{L} \otimes \mathfrak{L}$ and we develop one method to search them.

Keywords

Lie bialgebra / Yang-Baxter equation / twisted Schrödinger-Virasoro algebra

Cite this article

Download citation ▾
Huanxia Fa, Yanjie Li, Junbo Li. Schrödinger-Virasoro type Lie bialgebra: a twisted case. Front. Math. China, 2011, 6(4): 641‒657 https://doi.org/10.1007/s11464-011-0105-1

References

[1.]
Drinfel’d V. G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl, 1983, 28 3 667-671
[2.]
Drinfel’d V. G. Quantum groups. Proceeding of the International Congress of Mathematicians, Berkeley, 1987, Providence: Amer Math Soc 798-820
[3.]
Fa H., Ding L., Li J. Classification of modules of the intermediate series over a Schrödinger-Virasoro type. Journal of University of Science and Technology of China, 2010, 40 6 590-603
[4.]
Gao S., Jiang C., Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra. Alg Colloq, 2009, 16 4 549-566
[5.]
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra, 2004, 280, 145-161
CrossRef Google scholar
[6.]
Han J., Li J., Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50 8 083504
CrossRef Google scholar
[7.]
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75, 1023-1029
CrossRef Google scholar
[8.]
Hu N., Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra, 2007, 312, 902-929
CrossRef Google scholar
[9.]
Li J., Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49, 053512
CrossRef Google scholar
[10.]
Li J, Su Y. 2-cocycles of deformative Schrödinger-Virasoro algebras. arXiv: 0801.2210v1
[11.]
Li J., Su Y., Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B, 2008, 29, 487-500
CrossRef Google scholar
[12.]
Michaelis W. Lie coalgebras. Adv Math, 1980, 38, 1-54
CrossRef Google scholar
[13.]
Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math, 1985, 57, 93-162
CrossRef Google scholar
[14.]
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107, 365-392
CrossRef Google scholar
[15.]
Ng S., Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg, 2000, 151, 67-88
CrossRef Google scholar
[16.]
Roger C., Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7, 1477-1529
CrossRef Google scholar
[17.]
Song G., Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A, 2006, 49, 533-544
CrossRef Google scholar
[18.]
Song G., Su Y., Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl, 2008, 428, 2888-2899
CrossRef Google scholar
[19.]
Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg, 1993, 87, 301-312
CrossRef Google scholar
[20.]
Tan S., Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 332, 1379-1394
CrossRef Google scholar
[21.]
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra. Nuclear Phys B, 2009, 823 3 320-371
CrossRef Google scholar
[22.]
Wang W, Li J. Derivations and automorphisms of twisted deformative Schrödinger-Virasoro Lie algebras. arXiv: 1005.5506v1
[23.]
Wu Y., Song G., Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser), 2006, 22, 1915-1922
CrossRef Google scholar
[24.]
Wu Y., Song G., Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35 6 1992-2007
CrossRef Google scholar
[25.]
Xin B., Song G., Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A, 2007, 50, 1267-1279
CrossRef Google scholar
[26.]
Yang H., Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals, 2009, 40 2 661-671
CrossRef Google scholar
[27.]
Yue X., Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36 4 1537-1549
CrossRef Google scholar
[28.]
Zhang X., Tan S., Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schrödinger-Virasoro algebra. J Math Phys, 2010, 51 8 083524
CrossRef Google scholar
AI Summary AI Mindmap
PDF(200 KB)

Accesses

Citations

Detail

Sections
Recommended

/