RESEARCH ARTICLE

On classification of n-Lie algebras

  • Ruipu BAI , 1 ,
  • Guojie SONG 1 ,
  • Yaozhong ZHANG 2
Expand
  • 1. College of Mathematics and Computer Science, Hebei University, Baoding 071002, China
  • 2. School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia

Received date: 27 Oct 2010

Accepted date: 12 Jan 2011

Published date: 01 Aug 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we prove the isomorphic criterion theorem for (n+2)- dimensional n-Lie algebras, and give a complete classification of (n + 2)- dimensional n-Lie algebras over an algebraically closed field of characteristic zero.

Cite this article

Ruipu BAI , Guojie SONG , Yaozhong ZHANG . On classification of n-Lie algebras[J]. Frontiers of Mathematics in China, 2011 , 6(4) : 581 -606 . DOI: 10.1007/s11464-011-0107-z

1
Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D, 2008, 77: 065008

DOI

2
Bai R, Wang X, Xiao W, An H. The structure of low dimensional n-Lie algebras over a field of characteristic 2. Linear Algebra Appl, 2008, 428: 1912-1920

3
Bai R, Song G. The classification of six-dimensional 4-Lie algebras. J Phys A: Math Theor, 2009, 42: 035207

DOI

4
Benvenuti S, Rodríguez-Gómez D, Tonni E, Verlinde H. N = 8 superconformal gauge theories and M2 branes. J High Energy Phys, 2009, 01: 078

5
Cantarini N, Kac V. Classification of simple linearly compact n-Lie superalgebras. Comm Math Phys, 2010, 298: 833-853

DOI

6
Figueroa-O’Farrill J. Lorentzian Lie n-algebras. J Math Phys, 2008, 49: 113509

DOI

7
Figueroa-O’Farrill J. Metric Lie n-algebras and double extensions. 2008, arXiv: 0806.3534 [math.RT]

8
Figueroa-O’Farrill J, Papadopoulos G. Plücker-type relations for orthogonal planes. J Geom Phys, 2004, 49: 294-331

DOI

9
Filippov V. n-Lie algebras. Siberian Math J, 1985, 26(6): 126-140

10
Gauntlett J, Gutowski J. Constraining maximally supersymmetric membrane actions. J High Energy Phys, 2008, 06: 053

11
Gomis J, Milanesi G, Russo J. Bagger-Lambert theory for general Lie algebras. J High Energy Phys, 2008, 06: 075

12
Graaf W. Classification of solvable Lie algebras. Experimental Math, 2005, 14: 15-25

DOI

13
Gustavsson A. Algebraic structures on parallel M2-branes. Nuclear Phys B, 2009, 811(1-2): 66-76

DOI

14
Ho P, Imamura Y, Matsuo Y. M2 to D2 revisited. J High Energy Phys, 2008, 07: 003

15
Ho P, Matsuo Y, Shiba S. Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory. J High Energy Phys, 2009, 03: 045

16
Kasymov S. Theory of n-Lie algebras. Algebra Logika, 1987, 26(3): 277-297

DOI

17
Ling W. On the structure of n-Lie algebras. Dissertation, University-GHS-Siegen, 1993

18
Medeiros P, Figueroa-O’Farrill J, Méndez-Escobar E. Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space. J High Energy Phys, 2008, 07: 111

DOI

19
Medeiros P, Figueroa-O’Farrill J, Méndez-Escobar E. Metric Lie 3-algebras in Bagger-Lambert theory. J High Energy Phys, 2008, 08: 045

20
Medeiros P, Figueroa-O’Farrill J, Méndez-Escobar E, Ritter P. Metric 3-Lie algebras for unitary Bagger-Lambert theories. J High Energy Phys, 2009, 04: 037

21
Nagy P. Prolongations of Lie algebras and applications. arXiv: 0712.1398 [math.DG]

22
Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D, 1973, 7: 2405-2412

DOI

23
Papadopoulos G. M2-branes, 3-Lie algebras and Plucker relations. J High Energy Phys, 2008, 05: 054

24
Papadopoulos G. On the structure of k-Lie algebras. Classical Quantum Gravity, 2008, 25: 142002

25
Pozhidaev A. Simple quotient algebras and subalgebras of Jacobian algebras. Siberian Math J, 1998, 39: 512-517

26
Pozhidaev A. Two classes of central simple n-Lie algebras. Siberian Math J, 1999, 40: 1112-1118

DOI

27
Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys, 1994, 160: 295-315.

DOI

Options
Outlines

/