On classification of n-Lie algebras

Ruipu Bai , Guojie Song , Yaozhong Zhang

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 581 -606.

PDF (242KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 581 -606. DOI: 10.1007/s11464-011-0107-z
Research Article
RESEARCH ARTICLE

On classification of n-Lie algebras

Author information +
History +
PDF (242KB)

Abstract

In this paper, we prove the isomorphic criterion theorem for (n+2)-dimensional n-Lie algebras, and give a complete classification of (n + 2)-dimensional n-Lie algebras over an algebraically closed field of characteristic zero.

Keywords

n-Lie algebra / classification / multiplication table

Cite this article

Download citation ▾
Ruipu Bai, Guojie Song, Yaozhong Zhang. On classification of n-Lie algebras. Front. Math. China, 2011, 6(4): 581-606 DOI:10.1007/s11464-011-0107-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bagger J., Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D, 2008, 77, 065008

[2]

Bai R., Wang X., Xiao W., An H. The structure of low dimensional n-Lie algebras over a field of characteristic 2. Linear Algebra Appl, 2008, 428, 1912-1920

[3]

Bai R., Song G. The classification of six-dimensional 4-Lie algebras. J Phys A: Math Theor, 2009, 42, 035207

[4]

Benvenuti S., Rodríguez-Gómez D., Tonni E., Verlinde H. N = 8 superconformal gauge theories and M2 branes. J High Energy Phys, 2009, 01, 078

[5]

Cantarini N., Kac V. Classification of simple linearly compact n-Lie superalgebras. Comm Math Phys, 2010, 298, 833-853

[6]

Figueroa-O’Farrill J. Lorentzian Lie n-algebras. J Math Phys, 2008, 49, 113509

[7]

Figueroa-O’Farrill J. Metric Lie n-algebras and double extensions. 2008, arXiv: 0806.3534 [math.RT]

[8]

Figueroa-O’Farrill J., Papadopoulos G. Plücker-type relations for orthogonal planes. J Geom Phys, 2004, 49, 294-331

[9]

Filippov V. n-Lie algebras. Siberian Math J, 1985, 26 6 126-140

[10]

Gauntlett J., Gutowski J. Constraining maximally supersymmetric membrane actions. J High Energy Phys, 2008, 06, 053

[11]

Gomis J., Milanesi G., Russo J. Bagger-Lambert theory for general Lie algebras. J High Energy Phys, 2008, 06, 075

[12]

Graaf W. Classification of solvable Lie algebras. Experimental Math, 2005, 14, 15-25

[13]

Gustavsson A. Algebraic structures on parallel M2-branes. Nuclear Phys B, 2009, 811 1–2 66-76

[14]

Ho P., Imamura Y., Matsuo Y. M2 to D2 revisited. J High Energy Phys, 2008, 07, 003

[15]

Ho P., Matsuo Y., Shiba S. Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory. J High Energy Phys, 2009, 03, 045

[16]

Kasymov S. Theory of n-Lie algebras. Algebra Logika, 1987, 26 3 277-297

[17]

Ling W. On the structure of n-Lie algebras. Dissertation, University-GHS-Siegen, 1993

[18]

Medeiros P., Figueroa-O’Farrill J., Méndez-Escobar E. Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space. J High Energy Phys, 2008, 07, 111

[19]

Medeiros P., Figueroa-O’Farrill J., Méndez-Escobar E. Metric Lie 3-algebras in Bagger-Lambert theory. J High Energy Phys, 2008, 08, 045

[20]

Medeiros P., Figueroa-O’Farrill J., Méndez-Escobar E., Ritter P. Metric 3-Lie algebras for unitary Bagger-Lambert theories. J High Energy Phys, 2009, 04, 037

[21]

Nagy P. Prolongations of Lie algebras and applications. arXiv: 0712.1398 [math.DG]

[22]

Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D, 1973, 7, 2405-2412

[23]

Papadopoulos G. M2-branes, 3-Lie algebras and Plucker relations. J High Energy Phys, 2008, 05, 054

[24]

Papadopoulos G. On the structure of k-Lie algebras. Classical Quantum Gravity, 2008, 25, 142002

[25]

Pozhidaev A. Simple quotient algebras and subalgebras of Jacobian algebras. Siberian Math J, 1998, 39, 512-517

[26]

Pozhidaev A. Two classes of central simple n-Lie algebras. Siberian Math J, 1999, 40, 1112-1118

[27]

Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys, 1994, 160, 295-315

AI Summary AI Mindmap
PDF (242KB)

900

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/