On classification of
Ruipu BAI, Guojie SONG, Yaozhong ZHANG
On classification of
In this paper, we prove the isomorphic criterion theorem for (n+2)- dimensional n-Lie algebras, and give a complete classification of (n + 2)- dimensional n-Lie algebras over an algebraically closed field of characteristic zero.
n-Lie algebra / classification / multiplication table
[1] |
Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D, 2008, 77: 065008
CrossRef
Google scholar
|
[2] |
Bai R, Wang X, Xiao W, An H. The structure of low dimensional n-Lie algebras over a field of characteristic 2. Linear Algebra Appl, 2008, 428: 1912-1920
|
[3] |
Bai R, Song G. The classification of six-dimensional 4-Lie algebras. J Phys A: Math Theor, 2009, 42: 035207
CrossRef
Google scholar
|
[4] |
Benvenuti S, Rodríguez-Gómez D, Tonni E, Verlinde H. N = 8 superconformal gauge theories and M2 branes. J High Energy Phys, 2009, 01: 078
|
[5] |
Cantarini N, Kac V. Classification of simple linearly compact n-Lie superalgebras. Comm Math Phys, 2010, 298: 833-853
CrossRef
Google scholar
|
[6] |
Figueroa-O’Farrill J. Lorentzian Lie n-algebras. J Math Phys, 2008, 49: 113509
CrossRef
Google scholar
|
[7] |
Figueroa-O’Farrill J. Metric Lie n-algebras and double extensions. 2008, arXiv: 0806.3534 [math.RT]
|
[8] |
Figueroa-O’Farrill J, Papadopoulos G. Plücker-type relations for orthogonal planes. J Geom Phys, 2004, 49: 294-331
CrossRef
Google scholar
|
[9] |
Filippov V. n-Lie algebras. Siberian Math J, 1985, 26(6): 126-140
|
[10] |
Gauntlett J, Gutowski J. Constraining maximally supersymmetric membrane actions. J High Energy Phys, 2008, 06: 053
|
[11] |
Gomis J, Milanesi G, Russo J. Bagger-Lambert theory for general Lie algebras. J High Energy Phys, 2008, 06: 075
|
[12] |
Graaf W. Classification of solvable Lie algebras. Experimental Math, 2005, 14: 15-25
CrossRef
Google scholar
|
[13] |
Gustavsson A. Algebraic structures on parallel M2-branes. Nuclear Phys B, 2009, 811(1-2): 66-76
CrossRef
Google scholar
|
[14] |
Ho P, Imamura Y, Matsuo Y. M2 to D2 revisited. J High Energy Phys, 2008, 07: 003
|
[15] |
Ho P, Matsuo Y, Shiba S. Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory. J High Energy Phys, 2009, 03: 045
|
[16] |
Kasymov S. Theory of n-Lie algebras. Algebra Logika, 1987, 26(3): 277-297
CrossRef
Google scholar
|
[17] |
Ling W. On the structure of n-Lie algebras. Dissertation, University-GHS-Siegen, 1993
|
[18] |
Medeiros P, Figueroa-O’Farrill J, Méndez-Escobar E. Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space. J High Energy Phys, 2008, 07: 111
CrossRef
Google scholar
|
[19] |
Medeiros P, Figueroa-O’Farrill J, Méndez-Escobar E. Metric Lie 3-algebras in Bagger-Lambert theory. J High Energy Phys, 2008, 08: 045
|
[20] |
Medeiros P, Figueroa-O’Farrill J, Méndez-Escobar E, Ritter P. Metric 3-Lie algebras for unitary Bagger-Lambert theories. J High Energy Phys, 2009, 04: 037
|
[21] |
Nagy P. Prolongations of Lie algebras and applications. arXiv: 0712.1398 [math.DG]
|
[22] |
Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D, 1973, 7: 2405-2412
CrossRef
Google scholar
|
[23] |
Papadopoulos G. M2-branes, 3-Lie algebras and Plucker relations. J High Energy Phys, 2008, 05: 054
|
[24] |
Papadopoulos G. On the structure of k-Lie algebras. Classical Quantum Gravity, 2008, 25: 142002
|
[25] |
Pozhidaev A. Simple quotient algebras and subalgebras of Jacobian algebras. Siberian Math J, 1998, 39: 512-517
|
[26] |
Pozhidaev A. Two classes of central simple n-Lie algebras. Siberian Math J, 1999, 40: 1112-1118
CrossRef
Google scholar
|
[27] |
Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys, 1994, 160: 295-315.
CrossRef
Google scholar
|
/
〈 | 〉 |