On classification of n-Lie algebras
Ruipu Bai , Guojie Song , Yaozhong Zhang
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 581 -606.
On classification of n-Lie algebras
In this paper, we prove the isomorphic criterion theorem for (n+2)-dimensional n-Lie algebras, and give a complete classification of (n + 2)-dimensional n-Lie algebras over an algebraically closed field of characteristic zero.
n-Lie algebra / classification / multiplication table
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Figueroa-O’Farrill J. Metric Lie n-algebras and double extensions. 2008, arXiv: 0806.3534 [math.RT] |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Ling W. On the structure of n-Lie algebras. Dissertation, University-GHS-Siegen, 1993 |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Nagy P. Prolongations of Lie algebras and applications. arXiv: 0712.1398 [math.DG] |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
/
| 〈 |
|
〉 |