RESEARCH ARTICLE

On hybrid mean value of Dedekind sums and two-term exponential sums

  • Tingting WANG ,
  • Wenpeng ZHANG
Expand
  • Department of Mathematics, Northwest University, Xi’an 710127, China

Received date: 16 Feb 2011

Accepted date: 31 Mar 2011

Published date: 01 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we use the elementary and analytic methods to study the computational problem of one kind mean value involving the classical Dedekind sums and two-term exponential sums, and give two exact computational formulae for them.

Cite this article

Tingting WANG , Wenpeng ZHANG . On hybrid mean value of Dedekind sums and two-term exponential sums[J]. Frontiers of Mathematics in China, 2011 , 6(3) : 557 -563 . DOI: 10.1007/s11464-011-0132-y

1
Apostol T M. Modular Functions and Dirichlet Series in Number Theory. New York: Springer-Verlag, 1976

2
Cochrane T. Exponential sums modulo prime powers. Acta Arithmetica, 2002, 101: 131-149

DOI

3
Cochrane T, Pinner C. A further refinement of Mordell’s bound on exponential sums. Acta Arithmetica, 2005, 116: 35-41

DOI

4
Cochrane T, Pinner C. Using Stepanov’s method for exponential sums involving rational functions. Journal of Number Theory, 2006, 116: 270-292

DOI

5
Cochrane T, Zheng Z. Upper bounds on a two-term exponential sums. Sci China, Ser A, 2001, 44: 1003-1015

DOI

6
Conrey J B, Fransen E, Klein R, Scott C. Mean values of Dedekind sums. Journal of Number Theory, 1996, 56: 214-226

DOI

7
Hua L K. Introduction to Number Theory. Beijing: Science Press, 1979 (in Chinese)

8
Jia Chaohua. On the mean value of Dedekind sums. Journal of Number Theory, 2001, 87: 173-188

DOI

9
Rademacher H. On the transformation of log η(τ), J Indian Math Soc, 1955, 19: 25-30

10
Rademacher H. Dedekind Sums. Carus Mathematical Monographs. Washington DC: Math Assoc Amer, 1972

11
Zhang W. On the mean values of Dedekind Sums. Journal de Théorie des Nombres de Bordeaux, 1996, 8: 429-442

12
Zhang W. A note on the mean square value of the Dedekind sums. Acta Mathematica Hungarica, 2000, 86: 275-289

DOI

Options
Outlines

/