On hybrid mean value of Dedekind sums and two-term exponential sums

Tingting WANG, Wenpeng ZHANG

PDF(104 KB)
PDF(104 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (3) : 557-563. DOI: 10.1007/s11464-011-0132-y
RESEARCH ARTICLE
RESEARCH ARTICLE

On hybrid mean value of Dedekind sums and two-term exponential sums

Author information +
History +

Abstract

In this paper, we use the elementary and analytic methods to study the computational problem of one kind mean value involving the classical Dedekind sums and two-term exponential sums, and give two exact computational formulae for them.

Keywords

Dedekind sums / two-term exponential sums / mean value / computational formula

Cite this article

Download citation ▾
Tingting WANG, Wenpeng ZHANG. On hybrid mean value of Dedekind sums and two-term exponential sums. Front Math Chin, 2011, 6(3): 557‒563 https://doi.org/10.1007/s11464-011-0132-y

References

[1]
Apostol T M. Modular Functions and Dirichlet Series in Number Theory. New York: Springer-Verlag, 1976
[2]
Cochrane T. Exponential sums modulo prime powers. Acta Arithmetica, 2002, 101: 131-149
CrossRef Google scholar
[3]
Cochrane T, Pinner C. A further refinement of Mordell’s bound on exponential sums. Acta Arithmetica, 2005, 116: 35-41
CrossRef Google scholar
[4]
Cochrane T, Pinner C. Using Stepanov’s method for exponential sums involving rational functions. Journal of Number Theory, 2006, 116: 270-292
CrossRef Google scholar
[5]
Cochrane T, Zheng Z. Upper bounds on a two-term exponential sums. Sci China, Ser A, 2001, 44: 1003-1015
CrossRef Google scholar
[6]
Conrey J B, Fransen E, Klein R, Scott C. Mean values of Dedekind sums. Journal of Number Theory, 1996, 56: 214-226
CrossRef Google scholar
[7]
Hua L K. Introduction to Number Theory. Beijing: Science Press, 1979 (in Chinese)
[8]
Jia Chaohua. On the mean value of Dedekind sums. Journal of Number Theory, 2001, 87: 173-188
CrossRef Google scholar
[9]
Rademacher H. On the transformation of log η(τ), J Indian Math Soc, 1955, 19: 25-30
[10]
Rademacher H. Dedekind Sums. Carus Mathematical Monographs. Washington DC: Math Assoc Amer, 1972
[11]
Zhang W. On the mean values of Dedekind Sums. Journal de Théorie des Nombres de Bordeaux, 1996, 8: 429-442
[12]
Zhang W. A note on the mean square value of the Dedekind sums. Acta Mathematica Hungarica, 2000, 86: 275-289
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(104 KB)

Accesses

Citations

Detail

Sections
Recommended

/