RESEARCH ARTICLE

Generalized fractional Lévy random fields on Gel’fand triple: A white noise approach

  • Xuebin LÜ , 1,2 ,
  • Zhiyuan HUANG 3 ,
  • Wanyang DAI 1
Expand
  • 1. Department of Mathematics, Nanjing University, Nanjing 210093, China
  • 2. Department of Applied Mathematics, College of Science, Nanjing University of Technology, Nanjing 210009, China
  • 3. Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 17 Jan 2010

Accepted date: 22 Mar 2011

Published date: 01 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, under the first-order moment condition of the infinitely divisible distribution on Gel’fand triple, we use Riesz potential to construct fractional Lévy random fields on Gel’fand triple by white noise approach. We investigate the distribution and sample properties of isotropic and anisotropic fractional Lévy random fields, respectively.

Cite this article

Xuebin LÜ , Zhiyuan HUANG , Wanyang DAI . Generalized fractional Lévy random fields on Gel’fand triple: A white noise approach[J]. Frontiers of Mathematics in China, 2011 , 6(3) : 493 -506 . DOI: 10.1007/s11464-011-0130-0

1
Ahn V V, Angulo J M, Ruisz-Medina M D. Possible long range dependence in fractional random fields. J Statis Planning and Inference, 1999, 80: 95-110

DOI

2
Dekking M, Lévy-Véhel J, Lutton E, Tricot C. Fractals: Theory and Applications in Engineering. London: Spring-Verlag, 1999

3
Duncan T E, Jakubowski J, Pasik-Duncan B. Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise. Stoch Proc Appl, 2005, 115: 1357-1387

DOI

4
Duncan T E, Jakubowski J, Pasik-Duncan B. Stochastic integration for fractional Brownian motion in a Hilbert space. Stoch Dyn, 2006, 6: 53-75

DOI

5
Gel’fand I M, Vilenkin N Ya. Generalized Functions, Vol 4. New York: Academic Press, 1964

6
Huang Z Y, Li C J. On fractional stable processes and sheets: white noise approach. J Math Anal Appl, 2007, 325: 624-635

DOI

7
Huang Z Y, Li C J, Wan J P, Wu Y. Fractional Brownian motion and sheet as white noise functionals. Acta Math Sinica, 2006, 22: 1183-1188

DOI

8
Huang Z Y, Li P Y, Generalized fractional Lévy processes: a white noise approach. Stoch Dyn, 2006, 6: 473-485

DOI

9
Huang Z Y, Li P Y. Fractional generalized Lévy random fields as white noise functionals. Front Math China, 2007, 2(2): 211-226

DOI

10
Huang Z Y, Lü X B, Wan J P, Fractional Lévy processes and noises on Gel’fand triple. Stoch Dyn, 2010, 10: 37-51

DOI

11
Itô K. Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol 47. Philadelphia: SIAM, 1984

12
Lü X B, Huang Z Y, Wan J P. Fractional Lévy Processes on Gel’fand Triple and Stochastic Integration. Front Math China, 2008, 3(2): 287-303

DOI

13
Mandelbrot B, Van Ness J. Fractional Brownian motion, fractional noises and application. SIAM Rev, 1968, 10: 427-437

DOI

14
Marquardt T, Fractional Lévy processes with an application to long memory moving average processes. Bernoulli, 2006, 12(6): 1009-1126

DOI

15
Maslowski B, Nualart D. Evolution equations driven by a fractional Brownian motion. J Funct Anal, 2003, 202: 277-305

DOI

16
Ruiz-Medina M D, Angulo J M, Ahn V V. Fractional generalized random fields on bounded domains. Stoch Anal Appl, 2003, 21: 462-492

DOI

17
Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. London: Gordon and Breach, 1987

18
Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999

19
Tindel S, Tudor C A, Viens F. Stochastic evolution equations with fractional Brownian motion. Probab Th Rel Fields, 2003, 127: 186-204

DOI

20
Treves F. Topological Vector Spaces, Distributions and Kernels. New York: Academic Press, 1967

21
Wang C S, Qu MS, Chen J S. A white noise approach to infinitely divisible distributions on Gel’fand triple. J Math Anal Appl, 2006, 315: 425-435

DOI

Options
Outlines

/