Generalized fractional Lévy random fields on Gel’fand triple: A white noise approach
Xuebin LÜ, Zhiyuan HUANG, Wanyang DAI
Generalized fractional Lévy random fields on Gel’fand triple: A white noise approach
In this paper, under the first-order moment condition of the infinitely divisible distribution on Gel’fand triple, we use Riesz potential to construct fractional Lévy random fields on Gel’fand triple by white noise approach. We investigate the distribution and sample properties of isotropic and anisotropic fractional Lévy random fields, respectively.
Infinitely divisible distributions / Gel’fand triple / fractional Lévy noise / generalized Lévy random field / fractional generalized Lévy random field / anisotropic Lévy random fields
[1] |
Ahn V V, Angulo J M, Ruisz-Medina M D. Possible long range dependence in fractional random fields. J Statis Planning and Inference, 1999, 80: 95-110
CrossRef
Google scholar
|
[2] |
Dekking M, Lévy-Véhel J, Lutton E, Tricot C. Fractals: Theory and Applications in Engineering. London: Spring-Verlag, 1999
|
[3] |
Duncan T E, Jakubowski J, Pasik-Duncan B. Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise. Stoch Proc Appl, 2005, 115: 1357-1387
CrossRef
Google scholar
|
[4] |
Duncan T E, Jakubowski J, Pasik-Duncan B. Stochastic integration for fractional Brownian motion in a Hilbert space. Stoch Dyn, 2006, 6: 53-75
CrossRef
Google scholar
|
[5] |
Gel’fand I M, Vilenkin N Ya. Generalized Functions, Vol 4. New York: Academic Press, 1964
|
[6] |
Huang Z Y, Li C J. On fractional stable processes and sheets: white noise approach. J Math Anal Appl, 2007, 325: 624-635
CrossRef
Google scholar
|
[7] |
Huang Z Y, Li C J, Wan J P, Wu Y. Fractional Brownian motion and sheet as white noise functionals. Acta Math Sinica, 2006, 22: 1183-1188
CrossRef
Google scholar
|
[8] |
Huang Z Y, Li P Y, Generalized fractional Lévy processes: a white noise approach. Stoch Dyn, 2006, 6: 473-485
CrossRef
Google scholar
|
[9] |
Huang Z Y, Li P Y. Fractional generalized Lévy random fields as white noise functionals. Front Math China, 2007, 2(2): 211-226
CrossRef
Google scholar
|
[10] |
Huang Z Y, Lü X B, Wan J P, Fractional Lévy processes and noises on Gel’fand triple. Stoch Dyn, 2010, 10: 37-51
CrossRef
Google scholar
|
[11] |
Itô K. Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol 47. Philadelphia: SIAM, 1984
|
[12] |
Lü X B, Huang Z Y, Wan J P. Fractional Lévy Processes on Gel’fand Triple and Stochastic Integration. Front Math China, 2008, 3(2): 287-303
CrossRef
Google scholar
|
[13] |
Mandelbrot B, Van Ness J. Fractional Brownian motion, fractional noises and application. SIAM Rev, 1968, 10: 427-437
CrossRef
Google scholar
|
[14] |
Marquardt T, Fractional Lévy processes with an application to long memory moving average processes. Bernoulli, 2006, 12(6): 1009-1126
CrossRef
Google scholar
|
[15] |
Maslowski B, Nualart D. Evolution equations driven by a fractional Brownian motion. J Funct Anal, 2003, 202: 277-305
CrossRef
Google scholar
|
[16] |
Ruiz-Medina M D, Angulo J M, Ahn V V. Fractional generalized random fields on bounded domains. Stoch Anal Appl, 2003, 21: 462-492
CrossRef
Google scholar
|
[17] |
Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. London: Gordon and Breach, 1987
|
[18] |
Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999
|
[19] |
Tindel S, Tudor C A, Viens F. Stochastic evolution equations with fractional Brownian motion. Probab Th Rel Fields, 2003, 127: 186-204
CrossRef
Google scholar
|
[20] |
Treves F. Topological Vector Spaces, Distributions and Kernels. New York: Academic Press, 1967
|
[21] |
Wang C S, Qu MS, Chen J S. A white noise approach to infinitely divisible distributions on Gel’fand triple. J Math Anal Appl, 2006, 315: 425-435
CrossRef
Google scholar
|
/
〈 | 〉 |