RESEARCH ARTICLE

On quantum cluster algebras of finite type

  • Ming DING
Expand
  • Institute for Advanced Study, Tsinghua University, Beijing 100084, China

Received date: 24 Oct 2010

Accepted date: 08 Jan 2011

Published date: 01 Apr 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We extend the definition of a quantum analogue of the Caldero-Chapoton map defined by D. Rupel. When Q is a quiver of finite type, we prove that the algebra |k|(Q) generated by all cluster characters is exactly the quantum cluster algebra |k|(Q).

Cite this article

Ming DING . On quantum cluster algebras of finite type[J]. Frontiers of Mathematics in China, 2011 , 6(2) : 231 -240 . DOI: 10.1007/s11464-011-0104-2

1
Berenstein A, Fomin S, Zelevinsky A. Cluster algebras III: Upper bounds and double Bruhat cells. Duke Math J, 2005, 126: 1-52

DOI

2
Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572-618

DOI

3
Berenstein A, Zelevinsky A. Quantum cluster algebras. Adv Math, 2005, 195: 405-455

DOI

4
Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81: 595-616

DOI

5
Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172(1): 169-211

DOI

6
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. arXiv:0901.1937 [math.RT]

7
Ding M, Xu F. Bases of the quantum cluster algebra of the Kronecker quiver. arXiv:1004.2349v4 [math.RT]

8
Ding M, Xu F. The multiplication theorem and bases in finite and affine quantum cluster algebras. arXiv:1006.3928v3 [math.RT]

9
Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497-529

DOI

10
Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154(1): 63-121

DOI

11
Geiss C, Leclerc B, Schröer J. Kac-Moody groups and cluster algebras. arXiv:1001.3545v2 [math.RT]

12
Geiss C, Leclerc B, Schröer J. Generic bases for cluster algebras and the Chamber Ansatz. arXiv:1004.2781v2 [math.RT]

13
Grabowski J, Launois S. Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite-type cases. Int Math Res Notices, 2010,

DOI

14
Hubery A. Acyclic cluster algebras via Ringel-Hall algebras. Preprint, 2005

15
Lampe P. A quantum cluster algebra of Kronecker type and the dual canonical basis. Int Math Res Notices, 2010,

DOI

16
Qin F. Quantum cluster variables via Serre polynomials. arXiv:1004.4171v2 [math.QA]

17
Rupel D. On a quantum analogue of the Caldero-Chapoton Formula. Int Math Res Notices, 2010,

DOI

Options
Outlines

/