On quantum cluster algebras of finite type

Ming Ding

Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 231-240.

PDF(160 KB)
PDF(160 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 231-240. DOI: 10.1007/s11464-011-0104-2
Research Article
RESEARCH ARTICLE

On quantum cluster algebras of finite type

Author information +
History +

Abstract

We extend the definition of a quantum analogue of the Caldero-Chapoton map defined by D. Rupel. When Q is a quiver of finite type, we prove that the algebra [inline-graphic not available: see fulltext](Q) generated by all cluster characters is exactly the quantum cluster algebra [inline-graphic not available: see fulltext](Q).

Keywords

Cluster variable / quantum cluster algebra

Cite this article

Download citation ▾
Ming Ding. On quantum cluster algebras of finite type. Front. Math. China, 2011, 6(2): 231‒240 https://doi.org/10.1007/s11464-011-0104-2

References

[1.]
Berenstein A., Fomin S., Zelevinsky A. Cluster algebras III: Upper bounds and double Bruhat cells. Duke Math J, 2005, 126, 1-52
CrossRef Google scholar
[2.]
Buan A., Marsh R., Reineke M., Reiten I., Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204, 572-618
CrossRef Google scholar
[3.]
Berenstein A., Zelevinsky A. Quantum cluster algebras. Adv Math, 2005, 195, 405-455
CrossRef Google scholar
[4.]
Caldero P., Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81, 595-616
CrossRef Google scholar
[5.]
Caldero P., Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172 1 169-211
CrossRef Google scholar
[6.]
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. arXiv:0901.1937 [math.RT]
[7.]
Ding M, Xu F. Bases of the quantum cluster algebra of the Kronecker quiver. arXiv: 1004.2349v4 [math.RT]
[8.]
Ding M, Xu F. The multiplication theorem and bases in finite and affine quantum cluster algebras. arXiv:1006.3928v3 [math.RT]
[9.]
Fomin S., Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15 2 497-529
CrossRef Google scholar
[10.]
Fomin S., Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154 1 63-121
CrossRef Google scholar
[11.]
Geiss C, Leclerc B, Schröer J. Kac-Moody groups and cluster algebras. arXiv: 1001.3545v2 [math.RT]
[12.]
Geiss C, Leclerc B, Schröer J. Generic bases for cluster algebras and the Chamber Ansatz. arXiv:1004.2781v2 [math.RT]
[13.]
Grabowski J, Launois S. Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite-type cases. Int Math Res Notices, 2010, doi: 10.1093/imrn/rnq153
[14.]
Hubery A. Acyclic cluster algebras via Ringel-Hall algebras. Preprint, 2005
[15.]
Lampe P. A quantum cluster algebra of Kronecker type and the dual canonical basis. Int Math Res Notices, 2010, doi: 10.1093/imrn/rnq162
[16.]
Qin F. Quantum cluster variables via Serre polynomials. arXiv:1004.4171v2 [math.QA]
[17.]
Rupel D. On a quantum analogue of the Caldero-Chapoton Formula. Int Math Res Notices, 2010, doi:10.1093/imrn/rnq192
AI Summary AI Mindmap
PDF(160 KB)

Accesses

Citations

Detail

Sections
Recommended

/