On quantum cluster algebras of finite type
Ming Ding
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 231 -240.
On quantum cluster algebras of finite type
We extend the definition of a quantum analogue of the Caldero-Chapoton map defined by D. Rupel. When Q is a quiver of finite type, we prove that the algebra [inline-graphic not available: see fulltext](Q) generated by all cluster characters is exactly the quantum cluster algebra [inline-graphic not available: see fulltext](Q).
Cluster variable / quantum cluster algebra
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. arXiv:0901.1937 [math.RT] |
| [7] |
Ding M, Xu F. Bases of the quantum cluster algebra of the Kronecker quiver. arXiv: 1004.2349v4 [math.RT] |
| [8] |
Ding M, Xu F. The multiplication theorem and bases in finite and affine quantum cluster algebras. arXiv:1006.3928v3 [math.RT] |
| [9] |
|
| [10] |
|
| [11] |
Geiss C, Leclerc B, Schröer J. Kac-Moody groups and cluster algebras. arXiv: 1001.3545v2 [math.RT] |
| [12] |
Geiss C, Leclerc B, Schröer J. Generic bases for cluster algebras and the Chamber Ansatz. arXiv:1004.2781v2 [math.RT] |
| [13] |
Grabowski J, Launois S. Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite-type cases. Int Math Res Notices, 2010, doi: 10.1093/imrn/rnq153 |
| [14] |
Hubery A. Acyclic cluster algebras via Ringel-Hall algebras. Preprint, 2005 |
| [15] |
Lampe P. A quantum cluster algebra of Kronecker type and the dual canonical basis. Int Math Res Notices, 2010, doi: 10.1093/imrn/rnq162 |
| [16] |
Qin F. Quantum cluster variables via Serre polynomials. arXiv:1004.4171v2 [math.QA] |
| [17] |
Rupel D. On a quantum analogue of the Caldero-Chapoton Formula. Int Math Res Notices, 2010, doi:10.1093/imrn/rnq192 |
/
| 〈 |
|
〉 |