On quantum cluster algebras of finite type
Ming DING
On quantum cluster algebras of finite type
We extend the definition of a quantum analogue of the Caldero-Chapoton map defined by D. Rupel. When Q is a quiver of finite type, we prove that the algebra generated by all cluster characters is exactly the quantum cluster algebra .
Cluster variable / quantum cluster algebra
[1] |
Berenstein A, Fomin S, Zelevinsky A. Cluster algebras III: Upper bounds and double Bruhat cells. Duke Math J, 2005, 126: 1-52
CrossRef
Google scholar
|
[2] |
Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572-618
CrossRef
Google scholar
|
[3] |
Berenstein A, Zelevinsky A. Quantum cluster algebras. Adv Math, 2005, 195: 405-455
CrossRef
Google scholar
|
[4] |
Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81: 595-616
CrossRef
Google scholar
|
[5] |
Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172(1): 169-211
CrossRef
Google scholar
|
[6] |
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. arXiv:0901.1937 [math.RT]
|
[7] |
Ding M, Xu F. Bases of the quantum cluster algebra of the Kronecker quiver. arXiv:1004.2349v4 [math.RT]
|
[8] |
Ding M, Xu F. The multiplication theorem and bases in finite and affine quantum cluster algebras. arXiv:1006.3928v3 [math.RT]
|
[9] |
Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497-529
CrossRef
Google scholar
|
[10] |
Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154(1): 63-121
CrossRef
Google scholar
|
[11] |
Geiss C, Leclerc B, Schröer J. Kac-Moody groups and cluster algebras. arXiv:1001.3545v2 [math.RT]
|
[12] |
Geiss C, Leclerc B, Schröer J. Generic bases for cluster algebras and the Chamber Ansatz. arXiv:1004.2781v2 [math.RT]
|
[13] |
Grabowski J, Launois S. Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite-type cases. Int Math Res Notices, 2010,
CrossRef
Google scholar
|
[14] |
Hubery A. Acyclic cluster algebras via Ringel-Hall algebras. Preprint, 2005
|
[15] |
Lampe P. A quantum cluster algebra of Kronecker type and the dual canonical basis. Int Math Res Notices, 2010,
CrossRef
Google scholar
|
[16] |
Qin F. Quantum cluster variables via Serre polynomials. arXiv:1004.4171v2 [math.QA]
|
[17] |
Rupel D. On a quantum analogue of the Caldero-Chapoton Formula. Int Math Res Notices, 2010,
CrossRef
Google scholar
|
/
〈 | 〉 |