On quantum cluster algebras of finite type

Ming DING

PDF(160 KB)
PDF(160 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (2) : 231-240. DOI: 10.1007/s11464-011-0104-2
RESEARCH ARTICLE
RESEARCH ARTICLE

On quantum cluster algebras of finite type

Author information +
History +

Abstract

We extend the definition of a quantum analogue of the Caldero-Chapoton map defined by D. Rupel. When Q is a quiver of finite type, we prove that the algebra |k|(Q) generated by all cluster characters is exactly the quantum cluster algebra |k|(Q).

Keywords

Cluster variable / quantum cluster algebra

Cite this article

Download citation ▾
Ming DING. On quantum cluster algebras of finite type. Front Math Chin, 2011, 6(2): 231‒240 https://doi.org/10.1007/s11464-011-0104-2

References

[1]
Berenstein A, Fomin S, Zelevinsky A. Cluster algebras III: Upper bounds and double Bruhat cells. Duke Math J, 2005, 126: 1-52
CrossRef Google scholar
[2]
Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572-618
CrossRef Google scholar
[3]
Berenstein A, Zelevinsky A. Quantum cluster algebras. Adv Math, 2005, 195: 405-455
CrossRef Google scholar
[4]
Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81: 595-616
CrossRef Google scholar
[5]
Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172(1): 169-211
CrossRef Google scholar
[6]
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. arXiv:0901.1937 [math.RT]
[7]
Ding M, Xu F. Bases of the quantum cluster algebra of the Kronecker quiver. arXiv:1004.2349v4 [math.RT]
[8]
Ding M, Xu F. The multiplication theorem and bases in finite and affine quantum cluster algebras. arXiv:1006.3928v3 [math.RT]
[9]
Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497-529
CrossRef Google scholar
[10]
Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154(1): 63-121
CrossRef Google scholar
[11]
Geiss C, Leclerc B, Schröer J. Kac-Moody groups and cluster algebras. arXiv:1001.3545v2 [math.RT]
[12]
Geiss C, Leclerc B, Schröer J. Generic bases for cluster algebras and the Chamber Ansatz. arXiv:1004.2781v2 [math.RT]
[13]
Grabowski J, Launois S. Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite-type cases. Int Math Res Notices, 2010,
CrossRef Google scholar
[14]
Hubery A. Acyclic cluster algebras via Ringel-Hall algebras. Preprint, 2005
[15]
Lampe P. A quantum cluster algebra of Kronecker type and the dual canonical basis. Int Math Res Notices, 2010,
CrossRef Google scholar
[16]
Qin F. Quantum cluster variables via Serre polynomials. arXiv:1004.4171v2 [math.QA]
[17]
Rupel D. On a quantum analogue of the Caldero-Chapoton Formula. Int Math Res Notices, 2010,
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(160 KB)

Accesses

Citations

Detail

Sections
Recommended

/