Frontiers of Mathematics in China >
Restricted Lie algebras all whose elements are semisimple
Received date: 21 Jun 2010
Accepted date: 12 Oct 2010
Published date: 01 Feb 2011
Copyright
People studied the properties and structures of restricted Lie algebras all whose elements are semisimple. It is the main objective of this paper to continue the investigation in order to obtain deeper structure theorems. We obtain some sufficient conditions for the commutativity of restricted Lie algebras, generalize some results of R. Farnsteiner and characterize some properties of a finite-dimensional semisimple restricted Lie algebra all whose elements are semisimple. Moreover, we show that a centralsimple restricted Lie algebra all whose elements are semisimple over a field of characteristic p>7 is a form of a classical Lie algebra.
Liangyun CHEN , Xiaoning XU , Yongzheng ZHANG . Restricted Lie algebras all whose elements are semisimple[J]. Frontiers of Mathematics in China, 2011 , 6(1) : 61 -70 . DOI: 10.1007/s11464-010-0091-8
1 |
Bahturin Y, Mikhalev A, Petrogradsky V, Zaicev M. Infinite Dimensional Lie Superalgebras.Berlin, New York: Walter de Gruyter, 1992
|
2 |
Bowman K, Towers D A, Varea V R. Two generator subalgebras of Lie algebras. Linear Multilinear Algebra, 2007, 55(5): 429-438
|
3 |
Chen L Y, Meng D J, Ren B. On quasi-toral restricted Lie algebras. Chin Ann Math, Ser B, 2005, 26(2): 207-218
|
4 |
Chew B S. Relative homological algebra and homological dimension of Lie algebras. Trans Amer Math Soc, 1965, 117: 477-493
|
5 |
Chew B S. On the commutativity of restricted Lie algebras. Proc Amer Math Soc, 1965, 16: 547
|
6 |
Dokas I, Loday J. On restricted Leibniz algebras. Comm Algebra, 2006, 34: 4467-4478
|
7 |
Farnsteiner R. Lie-algebren mit treuen vollständig reduziblen darstellungen. Diplomarbeit, Hamburg, 1980
|
8 |
Farnsteiner R. On ad-semisimple Lie algebras. J Algebra, 1983, 83: 510-519
|
9 |
Farnsteiner R. Restricted Lie algebras with semilinear p-mapping. Amer Math Soc, 1984, 91: 41-45
|
10 |
Farnsteiner R. On the structure of simple-semisimple Lie algebras. Pacific J Math, 1984, 111(2): 287-299
|
11 |
Farnsteiner R. Conditions for the commutativity of restricted Lie algebras. Comm Algebra, 1985, 13(7): 1457-1489
|
12 |
Grunewald F, Kunyavskii B, Nikolova D, Plotkin E. Two-variable identities in groups and Lie algebras. Journal of Mathematical Sciences (New York), 2003, 116: 2972-2981
|
13 |
Herstein I N. Noncommutative Rings. The Carus Mathematica Monographs, No 15.New York: John Wiley and Sons, Inc, 1968
|
14 |
Hodge T L. Lie triple systems, restricted Lie triple systems and algebra groups. J Algebra, 2001, 244: 533-580
|
15 |
Hodge T L, Parshall B J. On the representation theory of Lie triple systems. Trans Amer Math Soc, 2002, 354(11): 4359-4391
|
16 |
Jacobson N. Restricted Lie algebras of characteristic p. Trans Amer Math Soc, 1943, 50: 15-25
|
17 |
Jacobson N. Classes of restricted Lie algebras of characteristic p, II. Duke Math J, 1943, 10: 107-121
|
18 |
Jacobson N. Commutative restricted Lie algebras. Proc Amer Math Soc, 1955, 3: 476-481
|
19 |
Jacobson N. Lie Algebras.New York: Dover Publications, Inc, 1979
|
20 |
Lu Caihui. The Lie-p algebras consisted of the semi-simple elements. Journal of Capital Normal University, 1996, 17(1): 1-7
|
21 |
Montgomery S. A generalization of a theorem of Jacobson II. Pacific J Math, 1973, 44: 233-240
|
22 |
Petrogradski V M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145: 1-21
|
23 |
Seligman G B. Modular Lie Algebras. Berlin, Heidelberg and New York: Springer-Verlag, 1967
|
24 |
Strade H, Farnsteiner R. Modular Lie algebras and their representations.New York: Marcel Dekker Inc, 1988
|
25 |
Wilson R L. Classification of restricted simple Lie algebras with toral Cartan subalgebras. J Algebra, 1983, 83: 531-569
|
26 |
Witt E. Treue darstellung Liescher Ringe. J Reine Angew Math,1937, 177: 152-160
|
/
〈 | 〉 |