RESEARCH ARTICLE

Restricted Lie algebras all whose elements are semisimple

  • Liangyun CHEN 1 ,
  • Xiaoning XU , 2 ,
  • Yongzheng ZHANG 1
Expand
  • 1. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
  • 2. School of Mathematics, Liaoning University, Shenyang 110036, China

Received date: 21 Jun 2010

Accepted date: 12 Oct 2010

Published date: 01 Feb 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

People studied the properties and structures of restricted Lie algebras all whose elements are semisimple. It is the main objective of this paper to continue the investigation in order to obtain deeper structure theorems. We obtain some sufficient conditions for the commutativity of restricted Lie algebras, generalize some results of R. Farnsteiner and characterize some properties of a finite-dimensional semisimple restricted Lie algebra all whose elements are semisimple. Moreover, we show that a centralsimple restricted Lie algebra all whose elements are semisimple over a field of characteristic p>7 is a form of a classical Lie algebra.

Cite this article

Liangyun CHEN , Xiaoning XU , Yongzheng ZHANG . Restricted Lie algebras all whose elements are semisimple[J]. Frontiers of Mathematics in China, 2011 , 6(1) : 61 -70 . DOI: 10.1007/s11464-010-0091-8

1
Bahturin Y, Mikhalev A, Petrogradsky V, Zaicev M. Infinite Dimensional Lie Superalgebras.Berlin, New York: Walter de Gruyter, 1992

2
Bowman K, Towers D A, Varea V R. Two generator subalgebras of Lie algebras. Linear Multilinear Algebra, 2007, 55(5): 429-438

DOI

3
Chen L Y, Meng D J, Ren B. On quasi-toral restricted Lie algebras. Chin Ann Math, Ser B, 2005, 26(2): 207-218

4
Chew B S. Relative homological algebra and homological dimension of Lie algebras. Trans Amer Math Soc, 1965, 117: 477-493

5
Chew B S. On the commutativity of restricted Lie algebras. Proc Amer Math Soc, 1965, 16: 547

DOI

6
Dokas I, Loday J. On restricted Leibniz algebras. Comm Algebra, 2006, 34: 4467-4478

DOI

7
Farnsteiner R. Lie-algebren mit treuen vollständig reduziblen darstellungen. Diplomarbeit, Hamburg, 1980

8
Farnsteiner R. On ad-semisimple Lie algebras. J Algebra, 1983, 83: 510-519

DOI

9
Farnsteiner R. Restricted Lie algebras with semilinear p-mapping. Amer Math Soc, 1984, 91: 41-45

10
Farnsteiner R. On the structure of simple-semisimple Lie algebras. Pacific J Math, 1984, 111(2): 287-299

11
Farnsteiner R. Conditions for the commutativity of restricted Lie algebras. Comm Algebra, 1985, 13(7): 1457-1489

DOI

12
Grunewald F, Kunyavskii B, Nikolova D, Plotkin E. Two-variable identities in groups and Lie algebras. Journal of Mathematical Sciences (New York), 2003, 116: 2972-2981

DOI

13
Herstein I N. Noncommutative Rings. The Carus Mathematica Monographs, No 15.New York: John Wiley and Sons, Inc, 1968

14
Hodge T L. Lie triple systems, restricted Lie triple systems and algebra groups. J Algebra, 2001, 244: 533-580

DOI

15
Hodge T L, Parshall B J. On the representation theory of Lie triple systems. Trans Amer Math Soc, 2002, 354(11): 4359-4391

DOI

16
Jacobson N. Restricted Lie algebras of characteristic p. Trans Amer Math Soc, 1943, 50: 15-25

17
Jacobson N. Classes of restricted Lie algebras of characteristic p, II. Duke Math J, 1943, 10: 107-121

DOI

18
Jacobson N. Commutative restricted Lie algebras. Proc Amer Math Soc, 1955, 3: 476-481

DOI

19
Jacobson N. Lie Algebras.New York: Dover Publications, Inc, 1979

20
Lu Caihui. The Lie-p algebras consisted of the semi-simple elements. Journal of Capital Normal University, 1996, 17(1): 1-7

21
Montgomery S. A generalization of a theorem of Jacobson II. Pacific J Math, 1973, 44: 233-240

22
Petrogradski V M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145: 1-21

DOI

23
Seligman G B. Modular Lie Algebras. Berlin, Heidelberg and New York: Springer-Verlag, 1967

24
Strade H, Farnsteiner R. Modular Lie algebras and their representations.New York: Marcel Dekker Inc, 1988

25
Wilson R L. Classification of restricted simple Lie algebras with toral Cartan subalgebras. J Algebra, 1983, 83: 531-569

DOI

26
Witt E. Treue darstellung Liescher Ringe. J Reine Angew Math,1937, 177: 152-160

DOI

Options
Outlines

/