Restricted Lie algebras all whose elements are semisimple
Liangyun CHEN, Xiaoning XU, Yongzheng ZHANG
Restricted Lie algebras all whose elements are semisimple
People studied the properties and structures of restricted Lie algebras all whose elements are semisimple. It is the main objective of this paper to continue the investigation in order to obtain deeper structure theorems. We obtain some sufficient conditions for the commutativity of restricted Lie algebras, generalize some results of R. Farnsteiner and characterize some properties of a finite-dimensional semisimple restricted Lie algebra all whose elements are semisimple. Moreover, we show that a centralsimple restricted Lie algebra all whose elements are semisimple over a field of characteristic p>7 is a form of a classical Lie algebra.
Restricted Lie algebra / ad-semisimple / simple-semiabelian / semisimple element / p-simple-semiabelian
[1] |
Bahturin Y, Mikhalev A, Petrogradsky V, Zaicev M. Infinite Dimensional Lie Superalgebras.Berlin, New York: Walter de Gruyter, 1992
|
[2] |
Bowman K, Towers D A, Varea V R. Two generator subalgebras of Lie algebras. Linear Multilinear Algebra, 2007, 55(5): 429-438
CrossRef
Google scholar
|
[3] |
Chen L Y, Meng D J, Ren B. On quasi-toral restricted Lie algebras. Chin Ann Math, Ser B, 2005, 26(2): 207-218
|
[4] |
Chew B S. Relative homological algebra and homological dimension of Lie algebras. Trans Amer Math Soc, 1965, 117: 477-493
|
[5] |
Chew B S. On the commutativity of restricted Lie algebras. Proc Amer Math Soc, 1965, 16: 547
CrossRef
Google scholar
|
[6] |
Dokas I, Loday J. On restricted Leibniz algebras. Comm Algebra, 2006, 34: 4467-4478
CrossRef
Google scholar
|
[7] |
Farnsteiner R. Lie-algebren mit treuen vollständig reduziblen darstellungen. Diplomarbeit, Hamburg, 1980
|
[8] |
Farnsteiner R. On ad-semisimple Lie algebras. J Algebra, 1983, 83: 510-519
CrossRef
Google scholar
|
[9] |
Farnsteiner R. Restricted Lie algebras with semilinear p-mapping. Amer Math Soc, 1984, 91: 41-45
|
[10] |
Farnsteiner R. On the structure of simple-semisimple Lie algebras. Pacific J Math, 1984, 111(2): 287-299
|
[11] |
Farnsteiner R. Conditions for the commutativity of restricted Lie algebras. Comm Algebra, 1985, 13(7): 1457-1489
CrossRef
Google scholar
|
[12] |
Grunewald F, Kunyavskii B, Nikolova D, Plotkin E. Two-variable identities in groups and Lie algebras. Journal of Mathematical Sciences (New York), 2003, 116: 2972-2981
CrossRef
Google scholar
|
[13] |
Herstein I N. Noncommutative Rings. The Carus Mathematica Monographs, No 15.New York: John Wiley and Sons, Inc, 1968
|
[14] |
Hodge T L. Lie triple systems, restricted Lie triple systems and algebra groups. J Algebra, 2001, 244: 533-580
CrossRef
Google scholar
|
[15] |
Hodge T L, Parshall B J. On the representation theory of Lie triple systems. Trans Amer Math Soc, 2002, 354(11): 4359-4391
CrossRef
Google scholar
|
[16] |
Jacobson N. Restricted Lie algebras of characteristic p. Trans Amer Math Soc, 1943, 50: 15-25
|
[17] |
Jacobson N. Classes of restricted Lie algebras of characteristic p, II. Duke Math J, 1943, 10: 107-121
CrossRef
Google scholar
|
[18] |
Jacobson N. Commutative restricted Lie algebras. Proc Amer Math Soc, 1955, 3: 476-481
CrossRef
Google scholar
|
[19] |
Jacobson N. Lie Algebras.New York: Dover Publications, Inc, 1979
|
[20] |
Lu Caihui. The Lie-p algebras consisted of the semi-simple elements. Journal of Capital Normal University, 1996, 17(1): 1-7
|
[21] |
Montgomery S. A generalization of a theorem of Jacobson II. Pacific J Math, 1973, 44: 233-240
|
[22] |
Petrogradski V M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145: 1-21
CrossRef
Google scholar
|
[23] |
Seligman G B. Modular Lie Algebras. Berlin, Heidelberg and New York: Springer-Verlag, 1967
|
[24] |
Strade H, Farnsteiner R. Modular Lie algebras and their representations.New York: Marcel Dekker Inc, 1988
|
[25] |
Wilson R L. Classification of restricted simple Lie algebras with toral Cartan subalgebras. J Algebra, 1983, 83: 531-569
CrossRef
Google scholar
|
[26] |
Witt E. Treue darstellung Liescher Ringe. J Reine Angew Math,1937, 177: 152-160
CrossRef
Google scholar
|
/
〈 | 〉 |