Restricted Lie algebras all whose elements are semisimple

Liangyun CHEN, Xiaoning XU, Yongzheng ZHANG

PDF(165 KB)
PDF(165 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (1) : 61-70. DOI: 10.1007/s11464-010-0091-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Restricted Lie algebras all whose elements are semisimple

Author information +
History +

Abstract

People studied the properties and structures of restricted Lie algebras all whose elements are semisimple. It is the main objective of this paper to continue the investigation in order to obtain deeper structure theorems. We obtain some sufficient conditions for the commutativity of restricted Lie algebras, generalize some results of R. Farnsteiner and characterize some properties of a finite-dimensional semisimple restricted Lie algebra all whose elements are semisimple. Moreover, we show that a centralsimple restricted Lie algebra all whose elements are semisimple over a field of characteristic p>7 is a form of a classical Lie algebra.

Keywords

Restricted Lie algebra / ad-semisimple / simple-semiabelian / semisimple element / p-simple-semiabelian

Cite this article

Download citation ▾
Liangyun CHEN, Xiaoning XU, Yongzheng ZHANG. Restricted Lie algebras all whose elements are semisimple. Front Math Chin, 2011, 6(1): 61‒70 https://doi.org/10.1007/s11464-010-0091-8

References

[1]
Bahturin Y, Mikhalev A, Petrogradsky V, Zaicev M. Infinite Dimensional Lie Superalgebras.Berlin, New York: Walter de Gruyter, 1992
[2]
Bowman K, Towers D A, Varea V R. Two generator subalgebras of Lie algebras. Linear Multilinear Algebra, 2007, 55(5): 429-438
CrossRef Google scholar
[3]
Chen L Y, Meng D J, Ren B. On quasi-toral restricted Lie algebras. Chin Ann Math, Ser B, 2005, 26(2): 207-218
[4]
Chew B S. Relative homological algebra and homological dimension of Lie algebras. Trans Amer Math Soc, 1965, 117: 477-493
[5]
Chew B S. On the commutativity of restricted Lie algebras. Proc Amer Math Soc, 1965, 16: 547
CrossRef Google scholar
[6]
Dokas I, Loday J. On restricted Leibniz algebras. Comm Algebra, 2006, 34: 4467-4478
CrossRef Google scholar
[7]
Farnsteiner R. Lie-algebren mit treuen vollständig reduziblen darstellungen. Diplomarbeit, Hamburg, 1980
[8]
Farnsteiner R. On ad-semisimple Lie algebras. J Algebra, 1983, 83: 510-519
CrossRef Google scholar
[9]
Farnsteiner R. Restricted Lie algebras with semilinear p-mapping. Amer Math Soc, 1984, 91: 41-45
[10]
Farnsteiner R. On the structure of simple-semisimple Lie algebras. Pacific J Math, 1984, 111(2): 287-299
[11]
Farnsteiner R. Conditions for the commutativity of restricted Lie algebras. Comm Algebra, 1985, 13(7): 1457-1489
CrossRef Google scholar
[12]
Grunewald F, Kunyavskii B, Nikolova D, Plotkin E. Two-variable identities in groups and Lie algebras. Journal of Mathematical Sciences (New York), 2003, 116: 2972-2981
CrossRef Google scholar
[13]
Herstein I N. Noncommutative Rings. The Carus Mathematica Monographs, No 15.New York: John Wiley and Sons, Inc, 1968
[14]
Hodge T L. Lie triple systems, restricted Lie triple systems and algebra groups. J Algebra, 2001, 244: 533-580
CrossRef Google scholar
[15]
Hodge T L, Parshall B J. On the representation theory of Lie triple systems. Trans Amer Math Soc, 2002, 354(11): 4359-4391
CrossRef Google scholar
[16]
Jacobson N. Restricted Lie algebras of characteristic p. Trans Amer Math Soc, 1943, 50: 15-25
[17]
Jacobson N. Classes of restricted Lie algebras of characteristic p, II. Duke Math J, 1943, 10: 107-121
CrossRef Google scholar
[18]
Jacobson N. Commutative restricted Lie algebras. Proc Amer Math Soc, 1955, 3: 476-481
CrossRef Google scholar
[19]
Jacobson N. Lie Algebras.New York: Dover Publications, Inc, 1979
[20]
Lu Caihui. The Lie-p algebras consisted of the semi-simple elements. Journal of Capital Normal University, 1996, 17(1): 1-7
[21]
Montgomery S. A generalization of a theorem of Jacobson II. Pacific J Math, 1973, 44: 233-240
[22]
Petrogradski V M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145: 1-21
CrossRef Google scholar
[23]
Seligman G B. Modular Lie Algebras. Berlin, Heidelberg and New York: Springer-Verlag, 1967
[24]
Strade H, Farnsteiner R. Modular Lie algebras and their representations.New York: Marcel Dekker Inc, 1988
[25]
Wilson R L. Classification of restricted simple Lie algebras with toral Cartan subalgebras. J Algebra, 1983, 83: 531-569
CrossRef Google scholar
[26]
Witt E. Treue darstellung Liescher Ringe. J Reine Angew Math,1937, 177: 152-160
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(165 KB)

Accesses

Citations

Detail

Sections
Recommended

/