Frontiers of Mathematics in China >
Oscillatory integrals on unit square along surfaces
Received date: 04 Jul 2010
Accepted date: 09 Oct 2010
Published date: 01 Feb 2011
Copyright
Let Q2 = [0, 1]2 be the unit square in two-dimensional Euclidean space . We study the Lp boundedness of the oscillatory integral operator Tα,β defined on the set of Schwartz test functions by
where , , is a surface on , and β1>α1, β2>α2. Our results extend some known results on .Key words: Oscillatory integral; singular integral; unit square; surface; product space
Jiecheng CHEN , Dashan FAN , Huoxiong WU , Xiangrong ZHU . Oscillatory integrals on unit square along surfaces[J]. Frontiers of Mathematics in China, 2011 , 6(1) : 49 -59 . DOI: 10.1007/s11464-010-0088-3
1 |
Chen J, Fan D, Wang M, Zhu X. Lp bounds for oscillatory hyper Hilbert transforms along curves. Proc Amer Math Soc, 2008, 136: 3145-3153
|
2 |
Chen J, Fan D, Zhu X. Sharp L2 boundedness of the oscillatory hyper Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(3): 653-658
|
3 |
Chandarana S. Lp bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389-416
|
4 |
Fan D, Wu H. Certain oscillatory integrals on unit square and their applications. Sci in China, Ser A, 2008, 51(10): 1895-1903
|
5 |
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137-193
|
6 |
Hirschman I I. Multiplier transforms, I. Duke Math J, 1956, 26: 222-242
|
7 |
Stein E M, Wainger S. Problems in harmonic analysis related to curvatures. Bull Amer Math Soc, 1978, 84: 1239-1295
|
8 |
Wainger S. Special Trigonometric Series in kDimension. Mem Amer Math Soc, No 59. Providence: AMS, 1965
|
9 |
Ye X. Boundedness of certain operators on function spaces.<DissertationTip/>, 2006
|
10 |
Zielinski M. Highly oscillatory singular integrals along curves.<DissertationTip/>, 1985
|
/
〈 | 〉 |