
Oscillatory integrals on unit square along surfaces
Jiecheng Chen, Dashan Fan, Huoxiong Wu, Xiangrong Zhu
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 49-59.
Oscillatory integrals on unit square along surfaces
Let Q 2 = [0, 1]2 be the unit square in two-dimensional Euclidean space ℝ2. We study the L p boundedness of the oscillatory integral operator T α,β defined on the set ℒ(ℝ2+n) of Schwartz test functions by $T_{\alpha ,\beta } f(u,v,x) = \int_{Q^2 } {\frac{{f(u - t,v - s,x - \gamma (t,s))}} {{t^{1 + \alpha _1 } s^{1 + \alpha _2 } }}} e^{it - \beta _{1_s } - \beta _2 } dtds,$ where x ∈ ℝ n, (u, v) ∈ ℝ2, (t, s, γ(t, s)) = (t, s, $t^{p_1 } s^{q_1 } ,t^{p_2 } s^{q_2 } ,...,t^{p_n } s^{q_n } $) is a surface on ℝ n+2, and β 1 > α 1, β 2 > α 2. Our results extend some known results on ℝ3.
Oscillatory integral / singular integral / unit square / surface / product space
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
/
〈 |
|
〉 |