Oscillatory integrals on unit square along surfaces

Jiecheng CHEN, Dashan FAN, Huoxiong WU, Xiangrong ZHU

PDF(195 KB)
PDF(195 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (1) : 49-59. DOI: 10.1007/s11464-010-0088-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Oscillatory integrals on unit square along surfaces

Author information +
History +

Abstract

Let Q2 = [0, 1]2 be the unit square in two-dimensional Euclidean space 2. We study the Lp boundedness of the oscillatory integral operator Tα,β defined on the set (2+n) of Schwartz test functions by

Tα,βf(u,v,x)=Q2f(u-t,v-s,x-γ(t,s))t1+α1s1+α2eit-β1s-β2dtds,
where xn, (u,v)2, (t,s,γ(t,s))=(t,s,tp1sq1,tp2sq2,,tpnsqn) is a surface on n+2, and β1>α1, β2>α2. Our results extend some known results on 3.

Keywords

Oscillatory integral / singular integral / unit square / surface / product space

Cite this article

Download citation ▾
Jiecheng CHEN, Dashan FAN, Huoxiong WU, Xiangrong ZHU. Oscillatory integrals on unit square along surfaces. Front Math Chin, 2011, 6(1): 49‒59 https://doi.org/10.1007/s11464-010-0088-3

References

[1]
Chen J, Fan D, Wang M, Zhu X. Lp bounds for oscillatory hyper Hilbert transforms along curves. Proc Amer Math Soc, 2008, 136: 3145-3153
CrossRef Google scholar
[2]
Chen J, Fan D, Zhu X. Sharp L2 boundedness of the oscillatory hyper Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(3): 653-658
CrossRef Google scholar
[3]
Chandarana S. Lp bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389-416
[4]
Fan D, Wu H. Certain oscillatory integrals on unit square and their applications. Sci in China, Ser A, 2008, 51(10): 1895-1903
CrossRef Google scholar
[5]
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137-193
CrossRef Google scholar
[6]
Hirschman I I. Multiplier transforms, I. Duke Math J, 1956, 26: 222-242
[7]
Stein E M, Wainger S. Problems in harmonic analysis related to curvatures. Bull Amer Math Soc, 1978, 84: 1239-1295
CrossRef Google scholar
[8]
Wainger S. Special Trigonometric Series in kDimension. Mem Amer Math Soc, No 59. Providence: AMS, 1965
[9]
Ye X. Boundedness of certain operators on function spaces.<DissertationTip/>, 2006
[10]
Zielinski M. Highly oscillatory singular integrals along curves.<DissertationTip/>, 1985

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(195 KB)

Accesses

Citations

Detail

Sections
Recommended

/