Oscillatory integrals on unit square along surfaces
Jiecheng CHEN, Dashan FAN, Huoxiong WU, Xiangrong ZHU
Oscillatory integrals on unit square along surfaces
Let Q2 = [0, 1]2 be the unit square in two-dimensional Euclidean space . We study the Lp boundedness of the oscillatory integral operator Tα,β defined on the set of Schwartz test functions by
where , , is a surface on , and β1>α1, β2>α2. Our results extend some known results on .Oscillatory integral / singular integral / unit square / surface / product space
[1] |
Chen J, Fan D, Wang M, Zhu X. Lp bounds for oscillatory hyper Hilbert transforms along curves. Proc Amer Math Soc, 2008, 136: 3145-3153
CrossRef
Google scholar
|
[2] |
Chen J, Fan D, Zhu X. Sharp L2 boundedness of the oscillatory hyper Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(3): 653-658
CrossRef
Google scholar
|
[3] |
Chandarana S. Lp bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389-416
|
[4] |
Fan D, Wu H. Certain oscillatory integrals on unit square and their applications. Sci in China, Ser A, 2008, 51(10): 1895-1903
CrossRef
Google scholar
|
[5] |
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137-193
CrossRef
Google scholar
|
[6] |
Hirschman I I. Multiplier transforms, I. Duke Math J, 1956, 26: 222-242
|
[7] |
Stein E M, Wainger S. Problems in harmonic analysis related to curvatures. Bull Amer Math Soc, 1978, 84: 1239-1295
CrossRef
Google scholar
|
[8] |
Wainger S. Special Trigonometric Series in kDimension. Mem Amer Math Soc, No 59. Providence: AMS, 1965
|
[9] |
Ye X. Boundedness of certain operators on function spaces.<DissertationTip/>, 2006
|
[10] |
Zielinski M. Highly oscillatory singular integrals along curves.<DissertationTip/>, 1985
|
/
〈 | 〉 |