Oscillatory integrals on unit square along surfaces

Jiecheng Chen, Dashan Fan, Huoxiong Wu, Xiangrong Zhu

Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 49-59.

PDF(195 KB)
PDF(195 KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 49-59. DOI: 10.1007/s11464-010-0088-3
Research Article
RESEARCH ARTICLE

Oscillatory integrals on unit square along surfaces

Author information +
History +

Abstract

Let Q 2 = [0, 1]2 be the unit square in two-dimensional Euclidean space ℝ2. We study the L p boundedness of the oscillatory integral operator T α,β defined on the set ℒ(ℝ2+n) of Schwartz test functions by $T_{\alpha ,\beta } f(u,v,x) = \int_{Q^2 } {\frac{{f(u - t,v - s,x - \gamma (t,s))}} {{t^{1 + \alpha _1 } s^{1 + \alpha _2 } }}} e^{it - \beta _{1_s } - \beta _2 } dtds,$ where x ∈ ℝ n, (u, v) ∈ ℝ2, (t, s, γ(t, s)) = (t, s, $t^{p_1 } s^{q_1 } ,t^{p_2 } s^{q_2 } ,...,t^{p_n } s^{q_n } $) is a surface on ℝ n+2, and β 1 > α 1, β 2 > α 2. Our results extend some known results on ℝ3.

Keywords

Oscillatory integral / singular integral / unit square / surface / product space

Cite this article

Download citation ▾
Jiecheng Chen, Dashan Fan, Huoxiong Wu, Xiangrong Zhu. Oscillatory integrals on unit square along surfaces. Front. Math. China, 2010, 6(1): 49‒59 https://doi.org/10.1007/s11464-010-0088-3

References

[1.]
Chen J., Fan D., Wang M., Zhu X. L p bounds for oscillatory hyper Hilbert transforms along curves. Proc Amer Math Soc, 2008, 136, 3145-3153
CrossRef Google scholar
[2.]
Chen J., Fan D., Zhu X. Sharp L 2 boundedness of the oscillatory hyper Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26 3 653-658
CrossRef Google scholar
[3.]
Chandarana S. L p bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175 2 389-416
[4.]
Fan D., Wu H. Certain oscillatory integrals on unit square and their applications. Sci in China, Ser A, 2008, 51 10 1895-1903
CrossRef Google scholar
[5.]
Fefferman C., Stein E. M. H p spaces of several variables. Acta Math, 1972, 129, 137-193
CrossRef Google scholar
[6.]
Hirschman I. I. Multiplier transforms, I. Duke Math J, 1956, 26, 222-242
[7.]
Stein E. M., Wainger S. Problems in harmonic analysis related to curvatures. Bull Amer Math Soc, 1978, 84, 1239-1295
CrossRef Google scholar
[8.]
Wainger S. Special Trigonometric Series in k Dimension. Mem Amer Math Soc, 1965, Providence: AMS.
[9.]
Ye X. Boundedness of certain operators on function spaces. Ph D Thesis, 2006, Hangzhou, China: Zhejiang Univ.
[10.]
Zielinski M. Highly oscillatory singular integrals along curves. Ph D Thesis, 1985, WI, USA: Univ of Wisconsin-Madison.
AI Summary AI Mindmap
PDF(195 KB)

Accesses

Citations

Detail

Sections
Recommended

/