RESEARCH ARTICLE

Sharp a posteriori error estimate for elliptic equation with singular data

  • Gang YUAN ,
  • Ruo LI
Expand
  • School of Mathematical Science, Peking University, Beijing 100871, China

Received date: 02 Apr 2010

Accepted date: 06 Sep 2010

Published date: 01 Feb 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We introduce two residual type a posteriori error estimators for second-order elliptic partial differential equations with its right-hand side in Lp (1<p≤2) space. Both estimators are proved to yield global upper and local lower bounds for the W1,p seminorm of the error. We adopt the estimators as the indicators in h-mesh adaptive method to solve two typical model problems. It is verified by the numerical results that the estimators lead to optimal orders of convergence.

Cite this article

Gang YUAN , Ruo LI . Sharp a posteriori error estimate for elliptic equation with singular data[J]. Frontiers of Mathematics in China, 2011 , 6(1) : 177 -202 . DOI: 10.1007/s11464-010-0084-7

1
Araya R, Behrens E, Rodriguez R. A Posteriori error estimates for elliptic problems with Dirac delta source terms. Numer Math, 2000, 5: 193-216

2
Babuska I, Miller A. A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comput Methods Appl Mech Engrg, 1987, 61: 1-40

DOI

3
Babuska I, Strouboulis T. The Finite Element Method and Its Reliability. Oxford: Clarendon Press, 2001

4
Babuska I, Yu D H. Asymptotically exact a posteriori error estimator for biquadratic elements. Finite Elements in Analysis and Design, 1987, 3: 341-354

DOI

5
Carstensen C, Bartels S. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math Comp, 2002, 71(239): 945-969

DOI

6
Carstensen C, Verfürth R. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J Numer Anal, 1999, 36: 1571–1587

DOI

7
Casas R. L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer Math, 1985, 47: 627-632

DOI

8
Crouzeix M, Thomée V. The stability in Lp and W1,p of the L2-projection onto finite element function spaces. Math Comput, 1987, 48: 67–83

9
Dauge M. Neumann and mixed problems on curvilinear polyhedral. Integral Equations Oper Theory, 1992, 15: 227-261

DOI

10
Kunert G, Verfürth R. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numerische Mathematik, 2000, 86: 283-303

DOI

11
Nochetto R H. Removing the saturation assumption in a posteriori error analysis. Istit Lombardo Sci Lett Rend A, 1993, 127: 67-82

12
Wang L H, Xu X J. The Mathematical Foundation of Finite Element Method. Beijing: Science Press, 2004 (in Chinese)

13
Yu D H. Asymptotically exact a posteriori error estimators for elements of bi-odd degree. Chinese J Numer Math Appl, 1991, 13: 64-78

14
Yu D H. Asymptotically exact a posteriori error estimators for elements of bi-even degree. Chinese J Numer Math Appl, 1991, 13: 82-90

Options
Outlines

/