Sharp a posteriori error estimate for elliptic equation with singular data

Gang Yuan , Ruo Li

Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 177 -202.

PDF (1786KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 177 -202. DOI: 10.1007/s11464-010-0084-7
Research Article
RESEARCH ARTICLE

Sharp a posteriori error estimate for elliptic equation with singular data

Author information +
History +
PDF (1786KB)

Abstract

We introduce two residual type a posteriori error estimators for second-order elliptic partial differential equations with its right-hand side in L p (1 < p ⩽ 2) space. Both estimators are proved to yield global upper and local lower bounds for the W 1,p seminorm of the error. We adopt the estimators as the indicators in h-mesh adaptive method to solve two typical model problems. It is verified by the numerical results that the estimators lead to optimal orders of convergence.

Keywords

L p space / finite element method / adaptive mesh refinement / a posteriori error estimate

Cite this article

Download citation ▾
Gang Yuan, Ruo Li. Sharp a posteriori error estimate for elliptic equation with singular data. Front. Math. China, 2010, 6(1): 177-202 DOI:10.1007/s11464-010-0084-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Araya R., Behrens E., Rodriguez R. A Posteriori error estimates for elliptic problems with Dirac delta source terms. Numer Math, 2000, 5, 193-216

[2]

Babuska I., Miller A. A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comput Methods Appl Mech Engrg, 1987, 61, 1-40

[3]

Babuska I., Strouboulis T. The Finite Element Method and Its Reliability, 2001, Oxford: Clarendon Press.

[4]

Babuska I., Yu D. H. Asymptotically exact a posteriori error estimator for biquadratic elements. Finite Elements in Analysis and Design, 1987, 3, 341-354

[5]

Carstensen C., Bartels S. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math Comp, 2002, 71 239 945-969

[6]

Carstensen C., Verfürth R. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J Numer Anal, 1999, 36, 1571-1587

[7]

Casas R. L 2 estimates for the finite element method for the Dirichlet problem with singular data. Numer Math, 1985, 47, 627-632

[8]

Crouzeix M., Thomée V. The stability in L p and W 1,p of the L 2-projection onto finite element function spaces. Math Comput, 1987, 48, 67-83

[9]

Dauge M. Neumann and mixed problems on curvilinear polyhedral. Integral Equations Oper Theory, 1992, 15, 227-261

[10]

Kunert G., Verfürth R. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numerische Mathematik, 2000, 86, 283-303

[11]

Nochetto R. H. Removing the saturation assumption in a posteriori error analysis. Istit Lombardo Sci Lett Rend A, 1993, 127, 67-82

[12]

Wang L. H., Xu X. J. The Mathematical Foundation of Finite Element Method, 2004, Beijing: Science Press.

[13]

Yu D. H. Asymptotically exact a posteriori error estimators for elements of bi-odd degree. Chinese J Numer Math Appl, 1991, 13, 64-78

[14]

Yu D. H. Asymptotically exact a posteriori error estimators for elements of bi-even degree. Chinese J Numer Math Appl, 1991, 13, 82-90

AI Summary AI Mindmap
PDF (1786KB)

719

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/