Sharp a posteriori error estimate for elliptic equation with singular data

Gang YUAN, Ruo LI

PDF(1786 KB)
PDF(1786 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (1) : 177-202. DOI: 10.1007/s11464-010-0084-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharp a posteriori error estimate for elliptic equation with singular data

Author information +
History +

Abstract

We introduce two residual type a posteriori error estimators for second-order elliptic partial differential equations with its right-hand side in Lp (1<p≤2) space. Both estimators are proved to yield global upper and local lower bounds for the W1,p seminorm of the error. We adopt the estimators as the indicators in h-mesh adaptive method to solve two typical model problems. It is verified by the numerical results that the estimators lead to optimal orders of convergence.

Keywords

Lp space / finite element method / adaptive mesh refinement / a posteriori error estimate

Cite this article

Download citation ▾
Gang YUAN, Ruo LI. Sharp a posteriori error estimate for elliptic equation with singular data. Front Math Chin, 2011, 6(1): 177‒202 https://doi.org/10.1007/s11464-010-0084-7

References

[1]
Araya R, Behrens E, Rodriguez R. A Posteriori error estimates for elliptic problems with Dirac delta source terms. Numer Math, 2000, 5: 193-216
[2]
Babuska I, Miller A. A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comput Methods Appl Mech Engrg, 1987, 61: 1-40
CrossRef Google scholar
[3]
Babuska I, Strouboulis T. The Finite Element Method and Its Reliability. Oxford: Clarendon Press, 2001
[4]
Babuska I, Yu D H. Asymptotically exact a posteriori error estimator for biquadratic elements. Finite Elements in Analysis and Design, 1987, 3: 341-354
CrossRef Google scholar
[5]
Carstensen C, Bartels S. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math Comp, 2002, 71(239): 945-969
CrossRef Google scholar
[6]
Carstensen C, Verfürth R. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J Numer Anal, 1999, 36: 1571–1587
CrossRef Google scholar
[7]
Casas R. L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer Math, 1985, 47: 627-632
CrossRef Google scholar
[8]
Crouzeix M, Thomée V. The stability in Lp and W1,p of the L2-projection onto finite element function spaces. Math Comput, 1987, 48: 67–83
[9]
Dauge M. Neumann and mixed problems on curvilinear polyhedral. Integral Equations Oper Theory, 1992, 15: 227-261
CrossRef Google scholar
[10]
Kunert G, Verfürth R. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numerische Mathematik, 2000, 86: 283-303
CrossRef Google scholar
[11]
Nochetto R H. Removing the saturation assumption in a posteriori error analysis. Istit Lombardo Sci Lett Rend A, 1993, 127: 67-82
[12]
Wang L H, Xu X J. The Mathematical Foundation of Finite Element Method. Beijing: Science Press, 2004 (in Chinese)
[13]
Yu D H. Asymptotically exact a posteriori error estimators for elements of bi-odd degree. Chinese J Numer Math Appl, 1991, 13: 64-78
[14]
Yu D H. Asymptotically exact a posteriori error estimators for elements of bi-even degree. Chinese J Numer Math Appl, 1991, 13: 82-90

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1786 KB)

Accesses

Citations

Detail

Sections
Recommended

/