Sharp
Gang YUAN, Ruo LI
Sharp
We introduce two residual type a posteriori error estimators for second-order elliptic partial differential equations with its right-hand side in Lp (1<p≤2) space. Both estimators are proved to yield global upper and local lower bounds for the W1,p seminorm of the error. We adopt the estimators as the indicators in h-mesh adaptive method to solve two typical model problems. It is verified by the numerical results that the estimators lead to optimal orders of convergence.
Lp space / finite element method / adaptive mesh refinement / a posteriori error estimate
[1] |
Araya R, Behrens E, Rodriguez R. A Posteriori error estimates for elliptic problems with Dirac delta source terms. Numer Math, 2000, 5: 193-216
|
[2] |
Babuska I, Miller A. A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comput Methods Appl Mech Engrg, 1987, 61: 1-40
CrossRef
Google scholar
|
[3] |
Babuska I, Strouboulis T. The Finite Element Method and Its Reliability. Oxford: Clarendon Press, 2001
|
[4] |
Babuska I, Yu D H. Asymptotically exact a posteriori error estimator for biquadratic elements. Finite Elements in Analysis and Design, 1987, 3: 341-354
CrossRef
Google scholar
|
[5] |
Carstensen C, Bartels S. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math Comp, 2002, 71(239): 945-969
CrossRef
Google scholar
|
[6] |
Carstensen C, Verfürth R. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J Numer Anal, 1999, 36: 1571–1587
CrossRef
Google scholar
|
[7] |
Casas R. L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer Math, 1985, 47: 627-632
CrossRef
Google scholar
|
[8] |
Crouzeix M, Thomée V. The stability in Lp and W1,p of the L2-projection onto finite element function spaces. Math Comput, 1987, 48: 67–83
|
[9] |
Dauge M. Neumann and mixed problems on curvilinear polyhedral. Integral Equations Oper Theory, 1992, 15: 227-261
CrossRef
Google scholar
|
[10] |
Kunert G, Verfürth R. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numerische Mathematik, 2000, 86: 283-303
CrossRef
Google scholar
|
[11] |
Nochetto R H. Removing the saturation assumption in a posteriori error analysis. Istit Lombardo Sci Lett Rend A, 1993, 127: 67-82
|
[12] |
Wang L H, Xu X J. The Mathematical Foundation of Finite Element Method. Beijing: Science Press, 2004 (in Chinese)
|
[13] |
Yu D H. Asymptotically exact a posteriori error estimators for elements of bi-odd degree. Chinese J Numer Math Appl, 1991, 13: 64-78
|
[14] |
Yu D H. Asymptotically exact a posteriori error estimators for elements of bi-even degree. Chinese J Numer Math Appl, 1991, 13: 82-90
|
/
〈 | 〉 |