Frontiers of Mathematics in China >
Weakly s-semipermutable subgroups of finite groups
Received date: 06 May 2010
Accepted date: 13 Aug 2010
Published date: 01 Feb 2011
Copyright
In this paper, we introduce the concept of weakly s-semipermutable subgroups. Let G be a finite group. Using the condition that the minimal subgroups or subgroups of order p2 of a given Sylow p-subgroup of G are weakly s-semipermutable in G, we give a criterion for p-nilpotency of G and get some results about formation.
Key words: weakly s-semipermutable subgroup; p-nilpotency; formation
Yong XU , Xianhua LI . Weakly s-semipermutable subgroups of finite groups[J]. Frontiers of Mathematics in China, 2011 , 6(1) : 161 -175 . DOI: 10.1007/s11464-010-0081-x
1 |
Ballester-Bolinches A.
|
2 |
Ballester-Bolinches A, Pedraza-Aguilera M C. On minimal subgroups of finite groups. Acta Math Hungar, 1996, 73: 335-342
|
3 |
Chen Zhongmu. Inner Outer Σ-Group and Minimal Non Σ-Group.Chongqing: Southeast Normal University Press, 1988 (in Chinese)
|
4 |
Chen Zhongmu. On a theorem of Srinivasan. J of Southwest Normal Univ (Nat Sci), 1987, 12(1): 1-4
|
5 |
David M B. The subgroups of PSL(3, q) for odd q. Trans Amer Math Soc, 1967, 127: 150-178
|
6 |
Doerk K, Hawkes T. Finite Solvable Groups.Berlin: Walter de Gruyter, 1992 Weakly s-semipermutable subgroups of finite groups 175
|
7 |
Guo W. The Theory of Classes of Groups.Beijing, New York: Science Press-Kluwer Academic Publishers, 2000
|
8 |
Guo X, Shum K P. Cover-avoidance properties and the structure of finite groups. J Pure Appl Algebra, 2003, 181: 297-308
|
9 |
Huppert B. Endliche Gruppen I.New York: Springer, 1967
|
10 |
Huppert B, Blackburn N. Finite Groups III. Berlin-New York: Springer-Verlag, 1982
|
11 |
Kegel O H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205-211
|
12 |
Li X, Yang Y. Semi CAP-subgroups and the structure of finite groups. Acta Math Sinica, 2008, 51(6): 1181-1187
|
13 |
Li Y, Wang Y, Wei H. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283-298
|
14 |
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315(1): 192-209
|
15 |
Wang Yanming. c-normality of groups and its properties. J Algebra, 1996, 180: 954-965
|
16 |
Zhang Q, Wang L. The influence of s-semipermutable properties of subgroups on the structure of finite groups. Acta Mathematica Sinica, 2005, 48(1): 81-88
|
/
〈 | 〉 |